1
0
mirror of https://github.com/pdf2htmlEX/pdf2htmlEX.git synced 2024-12-22 13:00:08 +00:00
pdf2htmlEX/demo/cheat5.page
2013-09-28 13:30:57 +08:00

2 lines
59 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<div class="pd w0 h0"><div id="pf5" class="pf" data-page-no="5"><div class="pc pc5"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Theoretical<span class="_ _0"> </span>Computer<span class="_ _0"> </span>Science<span class="_ _0"> </span>Cheat<span class="_ _0"> </span>Sheet</div><div class="t m0 xe3 h3 y2 ff2 fs0 fc0 sc0 ls0 ws0">Num<span class="_ _5"></span>b<span class="_ _3"></span>er Theory<span class="_ _57"> </span>Graph Theory</div><div class="t m0 x80 h3 y3 ff2 fs0 fc0 sc0 ls0 ws0">The<span class="_ _8"> </span>Chinese<span class="_ _8"> </span>remainder<span class="_ _8"> </span>theorem:<span class="_ _0"> </span>There<span class="_ _8"> </span>ex-</div><div class="t m0 x80 h3 y5 ff2 fs0 fc0 sc0 ls0 ws0">ists a n<span class="_ _5"></span>umber <span class="ff3">C<span class="_ _34"> </span></span>suc<span class="_ _5"></span>h that:</div><div class="t m0 xe3 h4 y3ab ff3 fs0 fc0 sc0 ls0 ws0">C <span class="ff4">≡<span class="_ _7"> </span></span>r</div><div class="t m0 x148 h5 y3ac ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x6 h3 y3ad ff2 fs0 fc0 sc0 ls0 ws0">mo<span class="_ _3"></span>d<span class="_ _7"> </span><span class="ff3">m</span></div><div class="t m0 x1a0 h5 y3ac ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x107 h3 y2f1 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x107 h3 y19 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x107 h3 y15 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x18e h3 y2f1 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x18e h3 y19 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x18e h3 y15 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6 h3 y2f1 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6 h3 y19 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6 h3 y15 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 xe3 h4 y242 ff3 fs0 fc0 sc0 ls0 ws0">C <span class="ff4">≡<span class="_ _7"> </span></span>r</div><div class="t m0 x148 h5 y3ae ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x6 h3 y2f4 ff2 fs0 fc0 sc0 ls0 ws0">mo<span class="_ _3"></span>d<span class="_ _7"> </span><span class="ff3">m</span></div><div class="t m0 xd5 h5 y3ae ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x80 h3 y130 ff2 fs0 fc0 sc0 ls0 ws0">if<span class="_ _7"> </span><span class="ff3">m</span></div><div class="t m0 x98 h5 y3af ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x8f h3 y130 ff2 fs0 fc0 sc0 ls0 ws0">and<span class="_ _7"> </span><span class="ff3">m</span></div><div class="t m0 x100 h5 y3af ff6 fs1 fc0 sc0 ls0 ws0">j</div><div class="t m0 x143 h4 y130 ff2 fs0 fc0 sc0 ls0 ws0">are<span class="_ _7"> </span>relatively<span class="_ _7"> </span>prime<span class="_ _7"> </span>for<span class="_ _7"> </span><span class="ff3">i<span class="_ _7"> </span><span class="ff4"></span></span>=<span class="_ _7"> </span><span class="ff3">j<span class="_ _15"></span></span>.</div><div class="t m0 x80 h3 y3b0 ff2 fs0 fc0 sc0 ls0 ws0">Eulers<span class="_ _11"> </span>function:<span class="_ _17"> </span><span class="ff3">φ</span>(<span class="ff3">x</span>)<span class="_ _11"> </span>i<span class="_ _5"></span>s<span class="_ _11"> </span>the<span class="_ _1e"> </span>num<span class="_ _5"></span>b<span class="_ _3"></span>er<span class="_ _11"> </span>of</div><div class="t m0 x80 h3 y351 ff2 fs0 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>ositiv<span class="_ _5"></span>e<span class="_ _e"> </span>in<span class="_ _5"></span>tegers<span class="_ _e"> </span>less<span class="_ _58"> </span>than<span class="_ _e"> </span><span class="ff3">x<span class="_ _58"> </span></span>relativ<span class="_ _5"></span>ely</div><div class="t m0 x80 h3 y2b ff2 fs0 fc0 sc0 ls0 ws0">prime<span class="_ _34"> </span>to<span class="_ _34"> </span><span class="ff3">x</span><span class="ls1d">.I<span class="_ _27"></span>f</span></div><div class="t m0 x120 h6 y330 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x18e h5 y3b1 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x18e h5 y354 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x94 h3 y2b ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 x8b h5 y5a ff6 fs1 fc0 sc0 ls0 ws0">e</div><div class="t m0 x10a h7 y13a ffa fs2 fc0 sc0 ls0 ws0">i</div><div class="t m0 x8b h5 y3b2 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x10b h3 y2b ff2 fs0 fc0 sc0 ls0 ws0">is<span class="_ _34"> </span>the<span class="_ _34"> </span>prime<span class="_ _1e"> </span>fac-</div><div class="t m0 x80 h3 y334 ff2 fs0 fc0 sc0 ls0 ws0">torization of <span class="ff3">x </span>then</div><div class="t m0 xfc h3 y3b3 ff3 fs0 fc0 sc0 ls0 ws0">φ<span class="ff2">(</span>x<span class="ff2 ls1">)=</span></div><div class="t m0 x13f h5 y3b4 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x1a1 h6 y3b5 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a1 h5 y3b6 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x149 h3 y3b7 ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 x6 h5 y3b8 ff6 fs1 fc0 sc0 ls0 ws0">e</div><div class="t m0 x1a2 h7 y5e ffa fs2 fc0 sc0 ls0 ws0">i</div><div class="t m0 x8b h5 y3b8 ff8 fs1 fc0 sc0 ls0 ws0"><span class="ff5">1</span></div><div class="t m0 x6 h5 y142 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x10b h3 y3b7 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">p</span></div><div class="t m0 x124 h5 y3b9 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x14a h4 y3b7 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff2">1)<span class="ff3">.</span></span></div><div class="t m0 x80 h3 y25e ff2 fs0 fc0 sc0 ls0 ws0">Eulers<span class="_ _0"> </span>theorem:<span class="_ _12"> </span>If<span class="_ _34"> </span><span class="ff3">a<span class="_ _0"> </span></span>and<span class="_ _34"> </span><span class="ff3">b<span class="_ _34"> </span></span>are<span class="_ _0"> </span>relatively</div><div class="t m0 x80 h3 y359 ff2 fs0 fc0 sc0 ls0 ws0">prime then</div><div class="t m0 xe3 h4 y40 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _7"> </span><span class="ff4">≡<span class="_ _7"> </span><span class="ff3">a</span></span></div><div class="t m0 x115 h5 y284 ff6 fs1 fc0 sc0 ls0 ws0">φ<span class="ff5">(</span>b<span class="ff5">)</span></div><div class="t m0 x8b h3 y40 ff2 fs0 fc0 sc0 ls0 ws0">mo<span class="_ _3"></span>d<span class="_ _7"> </span><span class="ff3">b.</span></div><div class="t m0 x80 h3 y3ba ff2 fs0 fc0 sc0 ls0 ws0">F<span class="_ _5"></span>ermats<span class="_ _7"> </span>theorem:</div><div class="t m0 xe3 h4 y44 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _7"> </span><span class="ff4">≡<span class="_ _7"> </span><span class="ff3">a</span></span></div><div class="t m0 x108 h5 y2cc ff6 fs1 fc0 sc0 ls0 ws0">p<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 x8b h3 y44 ff2 fs0 fc0 sc0 ls0 ws0">mo<span class="_ _3"></span>d<span class="_ _7"> </span><span class="ff3">p.</span></div><div class="t m0 x80 h3 y3bb ff2 fs0 fc0 sc0 ls0 ws0">The<span class="_ _0"> </span>Euclidean<span class="_ _0"> </span>algorithm:<span class="_ _11"> </span>if<span class="_ _0"> </span><span class="ff3 ls1e">a&gt;b</span>are<span class="_ _0"> </span>in-</div><div class="t m0 x80 h3 y73 ff2 fs0 fc0 sc0 ls0 ws0">tegers then</div><div class="t m0 x1a3 h3 y1f5 ff2 fs0 fc0 sc0 ls0 ws0">gcd(<span class="ff3">a,<span class="_ _6"> </span>b</span>)<span class="_ _7"> </span>=<span class="_ _7"> </span>gcd(<span class="ff3">a<span class="_ _7"> </span></span>mo<span class="_ _3"></span>d<span class="_ _7"> </span><span class="ff3">b,<span class="_ _8"> </span>b<span class="_ _5"></span><span class="ff2">)<span class="ff3">.</span></span></span></div><div class="t m0 x80 h3 y3bc ff2 fs0 fc0 sc0 ls0 ws0">If</div><div class="t m0 x1a4 h6 y3bd ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xc7 h5 y79 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc7 h5 y1f8 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 xc6 h3 y3be ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 x1a5 h5 y3bf ff6 fs1 fc0 sc0 ls0 ws0">e</div><div class="t m0 x18c h7 y38e ffa fs2 fc0 sc0 ls0 ws0">i</div><div class="t m0 x1a5 h5 y1f8 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x100 h3 y3be ff2 fs0 fc0 sc0 ls0 ws0">is<span class="_ _0"> </span>the<span class="_ _0"> </span>prime<span class="_ _0"> </span>factorization<span class="_ _0"> </span>of<span class="_ _34"> </span><span class="ff3">x</span></div><div class="t m0 x80 h3 y7a ff2 fs0 fc0 sc0 ls0 ws0">then</div><div class="t m0 xe1 h3 yab ff3 fs0 fc0 sc0 ls0 ws0">S<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2 ls1">)=</span></div><div class="t m0 x130 h6 y3c0 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x107 h5 y3c1 ff6 fs1 fc0 sc0 ls0 ws0">d<span class="ff8">|</span>x</div><div class="t m0 x18e h3 yab ff3 fs0 fc0 sc0 ls0 ws0">d<span class="_ _7"> </span><span class="ff2">=</span></div><div class="t m0 xe6 h5 y3c2 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x13e h6 y3c3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x13e h5 y3c4 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x144 h3 y1b5 ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 x82 h5 y3c5 ff6 fs1 fc0 sc0 ls0 ws0">e</div><div class="t m0 x1a0 h7 y3c6 ffa fs2 fc0 sc0 ls0 ws0">i</div><div class="t m0 x121 h5 y3c5 ff5 fs1 fc0 sc0 ls0 ws0">+1</div><div class="t m0 x82 h5 y3c7 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x118 h4 y1b5 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff2">1</span></div><div class="t m0 x145 h3 y3c8 ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 x121 h5 y1bf ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xfd h4 y3c8 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff2">1</span></div><div class="t m0 x119 h3 yab ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x80 h3 yaf ff2 fs0 fc0 sc0 ls0 ws0">P<span class="_ _5"></span>erfect<span class="_ _8"> </span>Numbers:<span class="_ _0"> </span><span class="ff3">x<span class="_ _8"> </span></span>is<span class="_ _8"> </span>an<span class="_ _8"> </span>even<span class="_ _8"> </span>perfect<span class="_ _8"> </span>num-</div><div class="t m0 x80 h3 y8d ff2 fs0 fc0 sc0 ls10 ws0">be<span class="_ _5"></span>r<span class="_ _8"> </span>iff<span class="_ _8"> </span><span class="ff3 ls0">x<span class="_ _7"> </span></span><span class="ls1">=2</span></div><div class="t m0 x100 h5 y270 ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 x123 h3 y8d ff2 fs0 fc0 sc0 ls0 ws0">(2</div><div class="t m0 x13f h5 y270 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x148 h4 y8d ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _15"></span><span class="ff2">1)<span class="_ _7"> </span>and<span class="_ _8"> </span>2</span></div><div class="t m0 x121 h5 y270 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xd6 h4 y8d ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _15"></span><span class="ff2">1<span class="_ _7"> </span>is<span class="_ _8"> </span>prime.</span></div><div class="t m0 x80 h3 y90 ff2 fs0 fc0 sc0 ls0 ws0">Wilsons theorem:<span class="_ _1e"> </span><span class="ff3">n<span class="_ _7"> </span></span>is a prime iff</div><div class="t m0 x88 h4 y1c4 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">n<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span></span></span>1)!<span class="_ _7"> </span><span class="ff4 ls1">≡−<span class="_ _b"></span><span class="ff2">1m<span class="_ _b"></span>o<span class="_ _9"></span>d<span class="_ _5"></span><span class="ff3 ls0">n.</span></span></span></div><div class="t m0 x80 h3 y205 ff2 fs0 fc0 sc0 ls0 ws0">M¨<span class="_ _2b"></span>obius in<span class="_ _5"></span>version:</div><div class="t m0 x16c h3 y210 ff3 fs0 fc0 sc0 ls0 ws0">µ<span class="ff2">(</span>i<span class="ff2 ls1">)=</span></div><div class="t m0 x140 h6 y1cf ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x140 h6 y3c9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x140 h6 y30e ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x140 h6 y3ca ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x140 h6 y376 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x88 h3 ya0 ff2 fs0 fc0 sc0 ls1f ws0">1i<span class="_ _59"></span>f<span class="_ _5a"></span><span class="ff3 ls0">i<span class="_ _7"> </span><span class="ff2 ls1">=1<span class="_ _b"></span>.</span></span></div><div class="t m0 x88 h3 y2d3 ff2 fs0 fc0 sc0 ls1f ws0">0i<span class="_ _59"></span>f<span class="_ _5a"></span><span class="ff3 ls0">i <span class="ff2">is not square-free.</span></span></div><div class="t m0 x88 h4 y3cb ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff4"></span>1)</div><div class="t m0 xe5 h5 y3cc ff6 fs1 fc0 sc0 ls0 ws0">r</div><div class="t m0 x108 h3 y3cd ff2 fs0 fc0 sc0 ls0 ws0">if <span class="ff3">i </span>is the pro<span class="_ _3"></span>duct of</div><div class="t m0 x108 h3 y3ce ff3 fs0 fc0 sc0 ls0 ws0">r<span class="_ _0"> </span><span class="ff2">distinct primes.</span></div><div class="t m0 x80 h3 y3cf ff2 fs0 fc0 sc0 ls0 ws0">If</div><div class="t m0 x18f h3 yc8 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>a<span class="ff2 ls1">)=</span></div><div class="t m0 x142 h6 y3d0 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x6 h5 yce ff6 fs1 fc0 sc0 ls0 ws0">d<span class="ff8">|</span>a</div><div class="t m0 x8c h3 yc8 ff3 fs0 fc0 sc0 ls0 ws0">F<span class="_ _6"> </span><span class="ff2">(</span>d<span class="ff2">)</span>,</div><div class="t m0 x80 h3 y3d1 ff2 fs0 fc0 sc0 ls0 ws0">then</div><div class="t m0 xc8 h3 y3d2 ff3 fs0 fc0 sc0 ls0 ws0">F<span class="_ _6"> </span><span class="ff2">(</span>a<span class="ff2 ls1">)=</span></div><div class="t m0 xf3 h6 y1da ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x18e h5 yd1 ff6 fs1 fc0 sc0 ls0 ws0">d<span class="ff8">|</span>a</div><div class="t m0 x101 h3 y3d3 ff3 fs0 fc0 sc0 ls0 ws0">µ<span class="ff2">(</span>d<span class="ff2">)</span>G</div><div class="t m0 x145 h6 y192 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10c h3 y2de ff3 fs0 fc0 sc0 ls0 ws0">a</div><div class="t m0 x10c h3 y3d4 ff3 fs0 fc0 sc0 ls0 ws0">d</div><div class="t m0 x132 h6 y192 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xd7 h3 y3d5 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x80 h3 y199 ff2 fs0 fc0 sc0 ls0 ws0">Prime n<span class="_ _5"></span>umbers:</div><div class="t m0 x92 h3 y3d6 ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 x8f h5 y3d7 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x18d h4 y3d8 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">n<span class="_ _6"> </span></span>ln<span class="_ _8"> </span><span class="ff3">n<span class="_ _8"> </span></span>+<span class="_ _8"> </span><span class="ff3">n<span class="_ _2"></span></span>ln<span class="_ _8"> </span>ln<span class="_ _2"> </span><span class="ff3">n<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span></span>n<span class="_ _8"> </span></span>+<span class="_ _8"> </span><span class="ff3">n</span></div><div class="t m0 x129 h3 y2e0 ff2 fs0 fc0 sc0 ls0 ws0">ln<span class="_ _6"> </span>ln<span class="_ _8"> </span><span class="ff3">n</span></div><div class="t m0 x119 h3 y2ae ff2 fs0 fc0 sc0 ls0 ws0">ln<span class="_ _6"> </span><span class="ff3">n</span></div><div class="t m0 x146 h3 y3d9 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">O</span></div><div class="t m0 x120 h6 y3da ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x148 h3 y2b2 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 xf3 h3 y3db ff2 fs0 fc0 sc0 ls0 ws0">ln<span class="_ _6"> </span><span class="ff3">n</span></div><div class="t m0 x94 h6 y3dc ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h3 y3dd ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x85 h3 y3de ff3 fs0 fc0 sc0 ls0 ws0">π<span class="_ _3"></span><span class="ff2">(</span>n<span class="ff2 ls1">)=</span></div><div class="t m0 x12f h3 y103 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc8 h3 y3df ff2 fs0 fc0 sc0 ls0 ws0">ln<span class="_ _6"> </span><span class="ff3">n</span></div><div class="t m0 x130 h3 y3e0 ff2 fs0 fc0 sc0 ls0 ws0">+</div><div class="t m0 x2 h3 y103 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x131 h3 y3df ff2 fs0 fc0 sc0 ls0 ws0">(ln<span class="_ _6"> </span><span class="ff3">n</span>)</div><div class="t m0 x13e h5 yf8 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1a6 h3 y3e0 ff2 fs0 fc0 sc0 ls0 ws0">+</div><div class="t m0 x14a h3 y103 ff2 fs0 fc0 sc0 ls0 ws0">2!<span class="ff3">n</span></div><div class="t m0 x82 h3 y3df ff2 fs0 fc0 sc0 ls0 ws0">(ln<span class="_ _6"> </span><span class="ff3">n</span>)</div><div class="t m0 x83 h5 yf8 ff5 fs1 fc0 sc0 ls0 ws0">3</div><div class="t m0 x146 h3 y109 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">O</span></div><div class="t m0 x120 h6 y3a4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x116 h3 y3e1 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 xf3 h3 y107 ff2 fs0 fc0 sc0 ls0 ws0">(ln<span class="_ _6"> </span><span class="ff3">n</span>)</div><div class="t m0 xe6 h5 y3e2 ff5 fs1 fc0 sc0 ls0 ws0">4</div><div class="t m0 x8c h6 y3a4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x95 h3 y109 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x179 h3 y327 ff2 fs0 fc0 sc0 ls0 ws0">Definitions:</div><div class="t m0 x179 h3 y3e3 fff fs0 fc0 sc0 lsc ws0">Loo<span class="_ _3"></span>p<span class="_ _49"> </span><span class="ff2 ls0">An edge<span class="_ _0"> </span>connecting<span class="_ _0"> </span>a ver-</span></div><div class="t m0 x137 h3 y11d ff2 fs0 fc0 sc0 ls0 ws0">tex to itself.</div><div class="t m0 x179 h3 y3e4 fff fs0 fc0 sc0 ls0 ws0">Dir<span class="_ _5"></span>e<span class="_ _5"></span>cte<span class="_ _5"></span>d<span class="_ _d"> </span><span class="ff2">Each edge has a direction.</span></div><div class="t m0 x179 h3 y19 fff fs0 fc0 sc0 ls0 ws0">Simple<span class="_ _5b"> </span><span class="ff2">Graph<span class="_ _21"> </span>with<span class="_ _36"> </span>no<span class="_ _21"> </span>lo<span class="_ _15"></span>ops<span class="_ _21"> </span>or</span></div><div class="t m0 x137 h3 y3e5 ff2 fs0 fc0 sc0 ls0 ws0">m<span class="_ _5"></span>ulti-edges.</div><div class="t m0 x179 h3 y3e6 fff fs0 fc0 sc0 ls0 ws0">Walk<span class="_ _5c"> </span><span class="ff2">A sequence <span class="ff3">v</span></span></div><div class="t m0 xad h5 y249 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x15a h3 y3e7 ff3 fs0 fc0 sc0 ls0 ws0">e</div><div class="t m0 x10 h5 y249 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xaf h3 y3e7 ff3 fs0 fc0 sc0 ls0 ws0">v</div><div class="t m0 x2e h5 y249 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x14 h3 y3e7 ff3 fs0 fc0 sc0 ls7 ws0">...e</div><div class="t m0 x11c h5 y249 ff6 fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x4a h3 y3e7 ff3 fs0 fc0 sc0 ls0 ws0">v</div><div class="t m0 xce h5 y249 ff6 fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x13a h3 y3e7 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x179 h3 y14f fff fs0 fc0 sc0 ls0 ws0">T<span class="_ _5"></span>r<span class="_ _3d"></span>ail<span class="_ _5d"> </span><span class="ff2">A<span class="_ _8"> </span>walk<span class="_ _8"> </span>with<span class="_ _7"> </span>distinct<span class="_ _8"> </span>edges.</span></div><div class="t m0 x179 h3 y3e8 fff fs0 fc0 sc0 ls0 ws0">Path<span class="_ _5e"> </span><span class="ff2">A<span class="_ _31"> </span>trail<span class="_ _5f"> </span>with<span class="_ _31"> </span>distinct</span></div><div class="t m0 x137 h3 y32e ff2 fs0 fc0 sc0 ls0 ws0">v<span class="_ _5"></span>ertices.</div><div class="t m0 x179 h3 y3e9 fff fs0 fc0 sc0 ls0 ws0">Conne<span class="_ _5"></span>cte<span class="_ _5"></span>d<span class="_ _24"> </span><span class="ff2">A<span class="_ _7"> </span>graph<span class="_ _7"> </span>where<span class="_ _7"> </span>there<span class="_ _7"> </span>exists</span></div><div class="t m0 x137 h3 y27b ff2 fs0 fc0 sc0 ls0 ws0">a<span class="_ _12"> </span>path<span class="_ _12"> </span>b<span class="_ _3"></span>et<span class="_ _5"></span>ween<span class="_ _12"> </span>an<span class="_ _5"></span>y<span class="_ _12"> </span>t<span class="_ _5"></span>w<span class="_ _5"></span>o</div><div class="t m0 x137 h3 y3ea ff2 fs0 fc0 sc0 ls0 ws0">v<span class="_ _5"></span>ertices.</div><div class="t m0 x179 h3 y30 fff fs0 fc0 sc0 ls0 ws0">Comp<span class="_ _5"></span>onent<span class="_ _22"> </span><span class="ff2">A<span class="_ _60"> </span>maximal<span class="_ _60"> </span>connected</span></div><div class="t m0 x137 h3 y3eb ff2 fs0 fc0 sc0 ls0 ws0">subgraph.</div><div class="t m0 x179 h3 y3ec fff fs0 fc0 sc0 lsc ws0">T ree<span class="_ _61"> </span><span class="ff2 ls0">A<span class="_ _7"> </span>connected<span class="_ _8"> </span>acyclic<span class="_ _7"> </span>graph.</span></div><div class="t m0 x179 h3 y3ed fff fs0 fc0 sc0 lsc ws0">F ree<span class="_ _34"> </span>t<span class="_ _15"></span>ree<span class="_ _32"> </span><span class="ff2 ls0">A tree with<span class="_ _0"> </span>no root.</span></div><div class="t m0 x179 h3 y261 fff fs0 fc0 sc0 ls0 ws0">DAG<span class="_ _62"> </span><span class="ff2">Directed acyclic graph.</span></div><div class="t m0 x179 h3 y3ee fff fs0 fc0 sc0 ls0 ws0">Eulerian<span class="_ _32"> </span><span class="ff2">Graph<span class="_ _7"> </span>with a trail visiting</span></div><div class="t m0 x137 h3 y48 ff2 fs0 fc0 sc0 ls0 ws0">eac<span class="_ _5"></span>h edge exactly once.</div><div class="t m0 x179 h3 y6a fff fs0 fc0 sc0 ls0 ws0">Hamiltonian<span class="_ _12"> </span><span class="ff2">Graph<span class="_ _8"> </span>with<span class="_ _7"> </span>a<span class="_ _8"> </span>cycle<span class="_ _7"> </span>visiting</span></div><div class="t m0 x137 h3 y6b ff2 fs0 fc0 sc0 ls0 ws0">eac<span class="_ _5"></span>h vertex exactly once.</div><div class="t m0 x179 h3 y3ef fff fs0 fc0 sc0 ls0 ws0">Cut<span class="_ _63"> </span><span class="ff2">A<span class="_ _11"> </span>set<span class="_ _1e"> </span>of<span class="_ _11"> </span>edges<span class="_ _11"> </span>whose<span class="_ _1e"> </span>re-</span></div><div class="t m0 x137 h3 y72 ff2 fs0 fc0 sc0 ls0 ws0">mo<span class="_ _5"></span>v<span class="_ _5"></span>al<span class="_ _1e"> </span>increases<span class="_ _11"> </span>the<span class="_ _1e"> </span>n<span class="_ _5"></span>um-</div><div class="t m0 x137 h3 y79 ff2 fs0 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>er of comp<span class="_ _3"></span>onen<span class="_ _5"></span>ts.</div><div class="t m0 x179 h3 y3f0 fff fs0 fc0 sc0 ls0 ws0">Cut-set<span class="_ _4d"> </span><span class="ff2">A minimal cut.</span></div><div class="t m0 x179 h3 y3c0 fff fs0 fc0 sc0 ls0 ws0">Cut<span class="_ _0"> </span>e<span class="_ _5"></span>dge<span class="_ _4"> </span><span class="ff2">A size 1 cut.</span></div><div class="t m0 x179 h3 y3f1 fff fs0 fc0 sc0 ls0 ws0">k-Conne<span class="_ _5"></span>cte<span class="_ _5"></span>d<span class="_ _58"> </span><span class="ff2">A<span class="_ _36"> </span>graph<span class="_ _36"> </span>connected<span class="_ _36"> </span>with</span></div><div class="t m0 x137 h4 y308 ff2 fs0 fc0 sc0 ls0 ws0">the<span class="_ _1e"> </span>remo<span class="_ _5"></span>v<span class="_ _5"></span>al<span class="_ _1e"> </span>of<span class="_ _1e"> </span>an<span class="_ _5"></span>y<span class="_ _1e"> </span><span class="ff3">k <span class="ff4"><span class="_ _0"> </span></span></span>1</div><div class="t m0 x137 h3 y3f2 ff2 fs0 fc0 sc0 ls0 ws0">v<span class="_ _5"></span>ertices.</div><div class="t m0 x179 h4 y1c1 fff fs0 fc0 sc0 ls0 ws0">k-T<span class="_ _5"></span>ough<span class="_ _64"> </span><span class="ff4">∀<span class="ff3">S<span class="_ _21"> </span></span>⊆<span class="_ _12"> </span><span class="ff3 ls20">V,<span class="_ _2"></span>S<span class="_ _12"> </span></span><span class="ff2">=<span class="_ _12"> </span></span>∅<span class="_ _1e"> </span><span class="ff2 lsc">we<span class="_ _11"> </span>h<span class="_ _3"></span>ave</span></span></div><div class="t m0 x137 h4 y1ca ff3 fs0 fc0 sc0 ls0 ws0">k<span class="_ _7"> </span><span class="ff4">·<span class="_ _8"></span></span>c<span class="_ _5"></span><span class="ff2">(<span class="ff3">G<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span></span>S<span class="_ _15"></span></span>)<span class="_ _7"> </span><span class="ff4 ls1">≤|<span class="_ _b"></span><span class="ff3 ls0">S<span class="_ _15"></span><span class="ff4">|<span class="ff2">.</span></span></span></span></span></div><div class="t m0 x179 h3 y3f3 fff fs0 fc0 sc0 ls0 ws0">k-R<span class="_ _5"></span>e<span class="_ _5"></span>gular<span class="_ _65"> </span><span class="ff2">A graph<span class="_ _0"> </span>where all<span class="_ _0"> </span>v<span class="_ _5"></span>ertices</span></div><div class="t m0 x137 h3 yb3 ff2 fs0 fc0 sc0 ls0 ws0">ha<span class="_ _5"></span>ve degree <span class="ff3">k</span>.</div><div class="t m0 x179 h3 yb5 fff fs0 fc0 sc0 ls0 ws0">k-F<span class="_ _5"></span>actor<span class="_ _55"> </span><span class="ff2">A<span class="_ _24"> </span><span class="ff3">k</span>-regular<span class="_ _24"> </span>spanning</span></div><div class="t m0 x137 h3 yb7 ff2 fs0 fc0 sc0 ls0 ws0">subgraph.</div><div class="t m0 x179 h3 y3f4 fff fs0 fc0 sc0 ls0 ws0">Matching<span class="_ _54"> </span><span class="ff2">A<span class="_ _34"> </span>set<span class="_ _1e"> </span>of<span class="_ _34"> </span>edges,<span class="_ _1e"> </span>no<span class="_ _1e"> </span>t<span class="_ _5"></span>w<span class="_ _5"></span>o<span class="_ _34"> </span>of</span></div><div class="t m0 x137 h3 y3f5 ff2 fs0 fc0 sc0 ls0 ws0">whic<span class="_ _5"></span>h are adjacent.</div><div class="t m0 x179 h3 y2da fff fs0 fc0 sc0 ls0 ws0">Clique<span class="_ _48"> </span><span class="ff2">A<span class="_ _36"> </span>set<span class="_ _21"> </span>of<span class="_ _36"> </span>v<span class="_ _5"></span>ertices,<span class="_ _e"> </span>all<span class="_ _21"> </span>of</span></div><div class="t m0 x137 h3 y18a ff2 fs0 fc0 sc0 ls0 ws0">whic<span class="_ _5"></span>h are adjacent.</div><div class="t m0 x179 h3 y3f6 fff fs0 fc0 sc0 ls0 ws0">Ind.<span class="_ _1e"> </span>set<span class="_ _66"> </span><span class="ff2">A<span class="_ _1e"> </span>set<span class="_ _34"> </span>of<span class="_ _1e"> </span>v<span class="_ _5"></span>ertices,<span class="_ _1e"> </span>none<span class="_ _1e"> </span>of</span></div><div class="t m0 x137 h3 y2eb ff2 fs0 fc0 sc0 ls0 ws0">whic<span class="_ _5"></span>h are adjacent.</div><div class="t m0 x179 h3 y3f7 fff fs0 fc0 sc0 ls0 ws0">V<span class="_ _5"></span>ertex<span class="_ _14"> </span>c<span class="_ _5"></span>over<span class="_ _12"> </span><span class="ff2">A<span class="_ _58"> </span>set<span class="_ _e"> </span>of<span class="_ _e"> </span>v<span class="_ _5"></span>ertices<span class="_ _e"> </span>whic<span class="_ _5"></span>h</span></div><div class="t m0 x137 h3 y3f8 ff2 fs0 fc0 sc0 ls0 ws0">co<span class="_ _5"></span>ver all edges.</div><div class="t m0 x179 h3 y3f9 fff fs0 fc0 sc0 ls0 ws0">Planar<span class="_ _0"> </span>gr<span class="_ _5"></span>aph<span class="_ _14"> </span><span class="ff2">A graph which<span class="_ _14"> </span>can be em-</span></div><div class="t m0 x137 h3 y219 ff2 fs0 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>eded in the plane.</div><div class="t m0 x179 h3 y383 fff fs0 fc0 sc0 ls0 ws0">Plane<span class="_ _0"> </span>gr<span class="_ _5"></span>aph<span class="_ _f"> </span><span class="ff2">An<span class="_ _0"> </span>em<span class="_ _5"></span>bedding<span class="_ _0"> </span>of<span class="_ _0"> </span>a planar</span></div><div class="t m0 x137 h3 y2ae ff2 fs0 fc0 sc0 ls0 ws0">graph.</div><div class="t m0 x9c h6 yea ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x45 h5 y3fa ff6 fs1 fc0 sc0 ls0 ws0">v<span class="_ _3"></span><span class="ff8">∈</span>V</div><div class="t m0 x9d h3 y3fb ff2 fs0 fc0 sc0 ls0 ws0">deg(<span class="ff3">v<span class="_ _3"></span></span><span class="ls1">)=2<span class="_ _b"></span><span class="ff3 ls0">m.</span></span></div><div class="t m0 x179 h4 y3de ff2 fs0 fc0 sc0 ls0 ws0">If <span class="ff3">G </span>is planar then <span class="ff3">n<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span></span>m<span class="_ _8"> </span></span>+<span class="_ _8"> </span><span class="ff3">f<span class="_ _0"> </span></span><span class="ls1">=2<span class="_ _b"></span>,<span class="_ _15"></span>s<span class="_ _b"></span>o</span></div><div class="t m0 x25 h4 y3fc ff3 fs0 fc0 sc0 ls0 ws0">f<span class="_ _0"> </span><span class="ff4">≤<span class="_ _7"> </span><span class="ff2">2</span></span>n<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff2">4</span></span><span class="lsa">,m<span class="_ _a"></span><span class="ff4 ls0">≤<span class="_ _7"> </span><span class="ff2">3<span class="ff3">n<span class="_ _8"> </span></span></span><span class="_ _8"> </span><span class="ff2">6<span class="ff3">.</span></span></span></span></div><div class="t m0 x179 h3 y112 ff2 fs0 fc0 sc0 ls0 ws0">An<span class="_ _5"></span>y planar graph has a vertex with de-</div><div class="t m0 x179 h4 y1a0 ff2 fs0 fc0 sc0 ls0 ws0">gree <span class="ff4">≤<span class="_ _7"> </span></span>5.</div><div class="t m0 x162 h3 y34d ff2 fs0 fc0 sc0 ls0 ws0">Notation:</div><div class="t m0 x162 h3 y6 ff3 fs0 fc0 sc0 ls0 ws0">E<span class="_ _15"></span><span class="ff2">(</span>G<span class="ff2">)<span class="_ _5f"> </span>Edge set</span></div><div class="t m0 x162 h3 ya ff3 fs0 fc0 sc0 ls0 ws0">V<span class="_ _8"> </span><span class="ff2">(</span>G<span class="ff2">)<span class="_ _5f"> </span>V<span class="_ _3d"></span>ertex set</span></div><div class="t m0 x162 h3 y10 ff3 fs0 fc0 sc0 ls0 ws0">c<span class="ff2">(</span>G<span class="ff2">)<span class="_ _67"> </span>Num<span class="_ _5"></span>b<span class="_ _3"></span>er of comp<span class="_ _3"></span>onents</span></div><div class="t m0 x162 h3 y3fd ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">[</span>S<span class="_ _15"></span><span class="ff2">]<span class="_ _67"> </span>Induced subgraph</span></div><div class="t m0 x162 h3 y32a ff2 fs0 fc0 sc0 ls0 ws0">deg(<span class="ff3">v<span class="_ _3"></span></span>)<span class="_ _f"> </span>Degree of <span class="ff3">v</span></div><div class="t m0 x162 h3 y128 ff2 fs0 fc0 sc0 ls0 ws0">∆(<span class="ff3">G</span>)<span class="_ _c"> </span>Maximum degree</div><div class="t m0 x162 h3 y32c ff3 fs0 fc0 sc0 ls0 ws0">δ<span class="_ _3"></span><span class="ff2">(</span>G<span class="ff2">)<span class="_ _67"> </span>Minim<span class="_ _5"></span>um<span class="_ _14"> </span>degree</span></div><div class="t m0 x162 h3 y3fe ff3 fs0 fc0 sc0 ls0 ws0">χ<span class="ff2">(</span>G<span class="ff2">)<span class="_ _60"> </span>Chromatic n<span class="_ _5"></span>umber</span></div><div class="t m0 x162 h3 y3ff ff3 fs0 fc0 sc0 ls0 ws0">χ</div><div class="t m0 x34 h5 y13b ff6 fs1 fc0 sc0 ls0 ws0">E</div><div class="t m0 x6d h3 y400 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">G</span>)<span class="_ _58"> </span>Edge chromatic n<span class="_ _5"></span>um<span class="_ _5"></span>b<span class="_ _3"></span>er</div><div class="t m0 x162 h3 y401 ff3 fs0 fc0 sc0 ls0 ws0">G</div><div class="t m0 x43 h5 y58 ff6 fs1 fc0 sc0 ls0 ws0">c</div><div class="t m0 x35 h3 y402 ff2 fs0 fc0 sc0 ls0 ws0">Complemen<span class="_ _5"></span>t graph</div><div class="t m0 x162 h3 y403 ff3 fs0 fc0 sc0 ls0 ws0">K</div><div class="t m0 x43 h5 y29 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x35 h3 y404 ff2 fs0 fc0 sc0 ls0 ws0">Complete graph</div><div class="t m0 x162 h3 y3b4 ff3 fs0 fc0 sc0 ls0 ws0">K</div><div class="t m0 x43 h5 y141 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x11d h7 y24f ffc fs2 fc0 sc0 ls0 ws0">1</div><div class="t m0 xec h5 y141 ff6 fs1 fc0 sc0 ls0 ws0">,n</div><div class="t m0 x7b h7 y24f ffc fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x35 h3 y3b4 ff2 fs0 fc0 sc0 ls0 ws0">Complete bipartite graph</div><div class="t m0 x162 h3 y405 ff2 fs0 fc0 sc0 ls0 ws0">r</div><div class="t m0 x16b h3 y405 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3 ls10">k,<span class="_ _6"> </span><span class="_ _5"></span><span class="ff2 ls0">)<span class="_ _28"> </span>Ramsey n<span class="_ _5"></span>um<span class="_ _5"></span>b<span class="_ _3"></span>er</span></span></div><div class="t m0 xb8 h3 y406 ff2 fs0 fc0 sc0 ls0 ws0">Geometry</div><div class="t m0 x162 h3 y407 ff2 fs0 fc0 sc0 ls0 ws0">Pro<span class="_ _15"></span>jectiv<span class="_ _5"></span>e<span class="_ _e"> </span>co<span class="_ _3"></span>ordinates:<span class="_ _31"> </span>triples</div><div class="t m0 x162 h3 y408 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x,<span class="_ _6"> </span>y<span class="_ _15"></span>,<span class="_ _6"> </span>z<span class="_ _15"></span></span>), not all <span class="ff3">x</span>, <span class="ff3">y<span class="_ _0"> </span></span>and <span class="ff3">z<span class="_ _0"> </span></span>zero.</div><div class="t m0 x186 h4 y409 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x,<span class="_ _6"> </span>y<span class="_ _15"></span>,<span class="_ _6"> </span>z<span class="_ _15"></span></span><span class="ls1">)=(<span class="_ _b"></span><span class="ff3 ls0">cx,<span class="_ _6"> </span>cy<span class="_ _15"></span>,<span class="_ _6"> </span>cz<span class="_ _15"></span><span class="ff2">)<span class="_ _28"> </span><span class="ff4">∀</span></span>c<span class="_ _7"> </span><span class="ff4"><span class="ff2 ls1">=0<span class="_ _b"></span><span class="ff3 ls0">.</span></span></span></span></span></div><div class="t m0 x162 h3 y40a ff2 fs0 fc0 sc0 ls0 ws0">Cartesian<span class="_ _55"> </span>Pro<span class="_ _3"></span>jective</div><div class="t m0 x162 h3 y40b ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x,<span class="_ _6"> </span>y<span class="_ _15"></span></span><span class="ls21">)(<span class="_ _68"></span><span class="ff3 ls0">x,<span class="_ _6"> </span>y<span class="_ _15"></span>,<span class="_ _6"> </span><span class="ff2">1)</span></span></span></div><div class="t m0 x162 h4 y1ad ff3 fs0 fc0 sc0 ls0 ws0">y <span class="ff2">=<span class="_ _7"> </span></span>mx<span class="_ _8"> </span><span class="ff2">+<span class="_ _8"> </span></span>b<span class="_ _31"> </span><span class="ff2">(</span>m,<span class="_ _8"> </span><span class="ff4"><span class="_ _5"></span><span class="ff2">1<span class="ff3 ls4">,b<span class="_ _1f"></span><span class="ff2 ls0">)</span></span></span></span></div><div class="t m0 x162 h4 y40c ff3 fs0 fc0 sc0 ls0 ws0">x<span class="_ _7"> </span><span class="ff2">=<span class="_ _7"> </span></span>c<span class="_ _5d"> </span><span class="ff2">(1</span>,<span class="_ _6"> </span><span class="ff2">0</span>,<span class="_ _8"> </span><span class="ff4"><span class="_ _5"></span><span class="ff3">c<span class="ff2">)</span></span></span></div><div class="t m0 x162 h3 y40d ff2 fs0 fc0 sc0 ls0 ws0">Distance<span class="_ _36"> </span>form<span class="_ _5"></span>ula,<span class="_ _e"> </span><span class="ff3">L</span></div><div class="t m0 xf0 h5 y165 ff6 fs1 fc0 sc0 ls0 ws0">p</div><div class="t m0 xa4 h3 y40e ff2 fs0 fc0 sc0 ls0 ws0">and<span class="_ _36"> </span><span class="ff3">L</span></div><div class="t m0 x38 h5 y165 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x162 h3 y38e ff2 fs0 fc0 sc0 ls0 ws0">metric:</div><div class="t m0 xec h6 y40f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x7b h3 y410 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x</span></div><div class="t m0 x35 h5 ya8 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x4f h4 y410 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">x</span></div><div class="t m0 x51 h5 ya8 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x70 h3 y410 ff2 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 xbb h5 y168 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x64 h3 y410 ff2 fs0 fc0 sc0 ls2 ws0">+(<span class="_ _9"></span><span class="ff3 ls0">y</span></div><div class="t m0 xdf h5 ya8 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x55 h4 y410 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">y</span></div><div class="t m0 xa6 h5 ya8 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 xe0 h3 y410 ff2 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x1a7 h5 y168 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 xd2 h3 y410 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x6d h6 y411 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xec h4 yab ff4 fs0 fc0 sc0 ls0 ws0">|<span class="ff3">x</span></div><div class="t m0 x7b h5 y412 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x60 h4 yab ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">x</span></div><div class="t m0 x62 h5 y412 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x1a h4 yab ff4 fs0 fc0 sc0 ls0 ws0">|</div><div class="t m0 x36 h5 y413 ff6 fs1 fc0 sc0 ls0 ws0">p</div><div class="t m0 x63 h4 yab ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4">|<span class="ff3">y</span></span></div><div class="t m0 x1e h5 y412 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xa3 h4 yab ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">y</span></div><div class="t m0 x21 h5 y412 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x7e h4 yab ff4 fs0 fc0 sc0 ls0 ws0">|</div><div class="t m0 x66 h5 y413 ff6 fs1 fc0 sc0 ls0 ws0">p</div><div class="t m0 xbe h6 y411 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xe0 h5 y414 ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff6">/p</span></div><div class="t m0 xc0 h3 yab ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x181 h3 y85 ff2 fs0 fc0 sc0 ls0 ws0">lim</div><div class="t m0 x33 h5 y2cf ff6 fs1 fc0 sc0 ls0 ws0">p<span class="ff8">→∞</span></div><div class="t m0 x4e h6 y415 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x7a h4 y85 ff4 fs0 fc0 sc0 ls0 ws0">|<span class="ff3">x</span></div><div class="t m0 x35 h5 y416 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x6e h4 y85 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">x</span></div><div class="t m0 x51 h5 y416 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x70 h4 y85 ff4 fs0 fc0 sc0 ls0 ws0">|</div><div class="t m0 x180 h5 y1bb ff6 fs1 fc0 sc0 ls0 ws0">p</div><div class="t m0 x1d h4 y85 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4">|<span class="ff3">y</span></span></div><div class="t m0 x199 h5 y416 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x20 h4 y85 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">y</span></div><div class="t m0 x23 h5 y416 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x7d h4 y85 ff4 fs0 fc0 sc0 ls0 ws0">|</div><div class="t m0 xbf h5 y1bb ff6 fs1 fc0 sc0 ls0 ws0">p</div><div class="t m0 xba h6 y415 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x165 h5 y3c1 ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff6">/p</span></div><div class="t m0 x185 h3 y85 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x162 h3 y270 ff2 fs0 fc0 sc0 ls0 ws0">Area<span class="_ _0"> </span>of<span class="_ _0"> </span>triangle<span class="_ _34"> </span>(<span class="ff3">x</span></div><div class="t m0 xd0 h5 y417 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x37 h3 y270 ff3 fs0 fc0 sc0 ls4 ws0">,y</div><div class="t m0 x20 h5 y417 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x21 h3 y270 ff2 fs0 fc0 sc0 ls0 ws0">),<span class="_ _0"> </span>(<span class="ff3">x</span></div><div class="t m0 xa5 h5 y417 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x105 h3 y270 ff3 fs0 fc0 sc0 ls4 ws0">,y</div><div class="t m0 x38 h5 y417 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x185 h3 y270 ff2 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x162 h3 y203 ff2 fs0 fc0 sc0 ls0 ws0">and (<span class="ff3">x</span></div><div class="t m0 xa1 h5 y1ca ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x169 h3 y203 ff3 fs0 fc0 sc0 ls4 ws0">,y</div><div class="t m0 x6e h5 y1ca ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x62 h3 y203 ff2 fs0 fc0 sc0 ls0 ws0">):</div><div class="t m0 xec h5 y418 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xec h5 y419 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4e h3 y41a ff2 fs0 fc0 sc0 ls0 ws0">abs</div><div class="t m0 x188 h6 y96 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x188 h6 y41b ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x188 h6 yb2 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x188 h6 y419 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x113 h3 y41c ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x6f h5 y99 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x51 h4 y41c ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">x</span></div><div class="t m0 x64 h5 y99 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x37 h3 y41c ff3 fs0 fc0 sc0 ls0 ws0">y</div><div class="t m0 x7c h5 y99 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x55 h4 y41c ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">y</span></div><div class="t m0 xa6 h5 y99 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x113 h3 y30d ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x6f h5 y177 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x51 h4 y30d ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">x</span></div><div class="t m0 x64 h5 y177 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x37 h3 y30d ff3 fs0 fc0 sc0 ls0 ws0">y</div><div class="t m0 x7c h5 y177 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x55 h4 y30d ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">y</span></div><div class="t m0 xa6 h5 y177 ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x182 h6 y96 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x182 h6 y41b ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x182 h6 yb2 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x182 h6 y419 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xd2 h3 y41d ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x162 h3 y1ce ff2 fs0 fc0 sc0 ls0 ws0">Angle formed b<span class="_ _5"></span>y three p<span class="_ _3"></span>oints:</div><div class="t m0 x19 h3 y41e ff3 fs0 fc0 sc0 ls0 ws0">θ</div><div class="t m0 x35 h3 y41f ff2 fs0 fc0 sc0 ls0 ws0">(0<span class="ff3">,<span class="_ _6"> </span></span>0)</div><div class="t m0 x55 h3 y420 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x</span></div><div class="t m0 x66 h5 y29c ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xbe h3 y420 ff3 fs0 fc0 sc0 ls4 ws0">,y</div><div class="t m0 x1a7 h5 y29c ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xd2 h3 y420 ff2 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 xdf h3 y3cb ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x</span></div><div class="t m0 x21 h5 y2d2 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa4 h3 y3cb ff3 fs0 fc0 sc0 ls4 ws0">,y</div><div class="t m0 x7d h5 y2d2 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x182 h3 y3cb ff2 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x1d h3 y421 ff3 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x54 h5 y422 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1a8 h3 y420 ff3 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1e h5 y29c ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x79 h3 y1dd ff2 fs0 fc0 sc0 ls0 ws0">cos<span class="_ _6"> </span><span class="ff3">θ </span>=</div><div class="t m0 x1a h3 y423 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x</span></div><div class="t m0 x63 h5 y424 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xbb h3 y425 ff3 fs0 fc0 sc0 ls4 ws0">,y</div><div class="t m0 x54 h5 y424 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xa2 h4 y425 ff2 fs0 fc0 sc0 ls0 ws0">)<span class="_ _8"> </span><span class="ff4">·<span class="_ _8"> </span></span>(<span class="ff3">x</span></div><div class="t m0 x21 h5 y424 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7e h3 y425 ff3 fs0 fc0 sc0 ls4 ws0">,y</div><div class="t m0 xa6 h5 y424 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 xbf h3 y425 ff2 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x1e h3 y426 ff3 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbc h5 y427 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x37 h3 y426 ff3 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xdf h5 y427 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 xba h3 y1dd ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x162 h3 yd5 ff2 fs0 fc0 sc0 ls0 ws0">Line<span class="_ _34"> </span>through<span class="_ _34"> </span>tw<span class="_ _5"></span>o<span class="_ _34"> </span>points<span class="_ _34"> </span>(<span class="ff3">x</span></div><div class="t m0 xa5 h5 y1de ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x105 h3 yd5 ff3 fs0 fc0 sc0 ls4 ws0">,y</div><div class="t m0 x38 h5 y1de ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x185 h3 yd5 ff2 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 x162 h3 y37e ff2 fs0 fc0 sc0 ls0 ws0">and (<span class="ff3">x</span></div><div class="t m0 xa1 h5 y197 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x169 h3 y37e ff3 fs0 fc0 sc0 ls4 ws0">,y</div><div class="t m0 x6e h5 y197 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x62 h3 y37e ff2 fs0 fc0 sc0 ls0 ws0">):</div><div class="t m0 x35 h6 y1df ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x35 h6 y31d ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x35 h6 y2ac ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x35 h6 y428 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x35 h6 y382 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x35 h6 y429 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x4f h3 ydf ff3 fs0 fc0 sc0 ls22 ws0">xy<span class="_ _1f"></span><span class="ff2 ls0">1</span></div><div class="t m0 x50 h3 ydc ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x113 h5 y42a ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x17e h3 ydc ff3 fs0 fc0 sc0 ls0 ws0">y</div><div class="t m0 x52 h5 y42a ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x1e h3 ydc ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x50 h3 ye1 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x113 h5 y42b ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x17e h3 ye1 ff3 fs0 fc0 sc0 ls0 ws0">y</div><div class="t m0 x52 h5 y42b ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x1e h3 ye1 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x53 h6 y1df ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x53 h6 y31d ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x53 h6 y2ac ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x53 h6 y42c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x53 h6 y382 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x53 h6 y42d ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xdf h3 ydc ff2 fs0 fc0 sc0 ls1 ws0">=0<span class="_ _b"></span><span class="ff3 ls0">.</span></div><div class="t m0 x162 h3 yf3 ff2 fs0 fc0 sc0 ls0 ws0">Area of circle, v<span class="_ _5"></span>olume of sphere:</div><div class="t m0 x13b h3 y2ba ff3 fs0 fc0 sc0 ls0 ws0">A<span class="_ _7"> </span><span class="ff2">=<span class="_ _7"> </span></span><span class="ls10">πr</span></div><div class="t m0 x6f h5 y3db ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x36 h3 y2ba ff3 fs0 fc0 sc0 lsd ws0">,V<span class="_ _69"></span><span class="ff2 ls0">=</span></div><div class="t m0 x65 h5 yeb ff5 fs1 fc0 sc0 ls0 ws0">4</div><div class="t m0 x65 h5 y19d ff5 fs1 fc0 sc0 ls0 ws0">3</div><div class="t m0 x66 h3 y2ba ff3 fs0 fc0 sc0 ls10 ws0">πr</div><div class="t m0 x167 h5 y3db ff5 fs1 fc0 sc0 ls0 ws0">3</div><div class="t m0 xa5 h3 y2ba ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x17c h3 y3df ff2 fs0 fc0 sc0 ls0 ws0">If<span class="_ _7"> </span>I<span class="_ _7"> </span>hav<span class="_ _5"></span>e<span class="_ _7"> </span>seen<span class="_ _7"> </span>farther<span class="_ _7"> </span>than<span class="_ _7"> </span>others,</div><div class="t m0 x17c h3 y42e ff2 fs0 fc0 sc0 ls0 ws0">it<span class="_ _0"> </span>is b<span class="_ _3"></span>ecause<span class="_ _0"> </span>I<span class="_ _0"> </span>ha<span class="_ _5"></span>v<span class="_ _5"></span>e<span class="_ _0"> </span>sto<span class="_ _3"></span>o<span class="_ _3"></span>d<span class="_ _0"> </span>on the</div><div class="t m0 x17c h3 y42f ff2 fs0 fc0 sc0 ls0 ws0">shoulders of gian<span class="_ _5"></span>ts.</div><div class="t m0 x17c h3 y430 ff2 fs0 fc0 sc0 ls0 ws0"> Issac Newton</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div></div>