mirror of
https://github.com/pdf2htmlEX/pdf2htmlEX.git
synced 2024-12-22 13:00:08 +00:00
2 lines
190 KiB
Plaintext
2 lines
190 KiB
Plaintext
<div class="pd w0 h0"><div id="pfa" class="pf" data-page-no="a"><div class="pc pca"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Theoretical<span class="_ _0"> </span>Computer<span class="_ _0"> </span>Science<span class="_ _0"> </span>Cheat<span class="_ _0"> </span>Sheet</div><div class="t m0 xf7 h3 y2 ff2 fs0 fc0 sc0 ls0 ws0">Series<span class="_ _94"> </span>Esc<span class="_ _5"></span>her’s Knot</div><div class="t m0 x1ba h3 y3 ff2 fs0 fc0 sc0 ls0 ws0">Expansions:</div><div class="t m0 x92 h3 y544 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x1c9 h4 y5e7 ff2 fs0 fc0 sc0 ls0 ws0">(1<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"> </span><span class="ff3">x</span></span>)</div><div class="t m0 x1ca h5 y34c ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+1</span></div><div class="t m0 xe2 h3 y5e8 ff2 fs0 fc0 sc0 ls0 ws0">ln</div><div class="t m0 xe5 h3 y544 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 xe3 h4 y5e7 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"> </span><span class="ff3">x</span></span></div><div class="t m0 x94 h3 y5e9 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1af h5 y495 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y5ea ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y5eb ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x145 h3 y5e8 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">H</span></div><div class="t m0 xd6 h5 y5ec ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+</span>i</div><div class="t m0 x129 h4 y5e8 ff4 fs0 fc0 sc0 ls0 ws0">−<span class="_ _8"> </span><span class="ff3">H</span></div><div class="t m0 x12a h5 y5ec ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x1b8 h3 y5e8 ff2 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 xc9 h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x8e h3 y544 ff3 fs0 fc0 sc0 ls0 ws0">n<span class="_ _8"> </span><span class="ff2">+<span class="_ _8"> </span></span>i</div><div class="t m0 x192 h3 y5ed ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x8 h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x150 h3 y5e8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x157 h5 y5ee ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xe9 h3 y5e8 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x9c h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x46 h3 y544 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x46 h3 y5e7 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x9d h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x2b h5 y576 ff8 fs1 fc0 sc0 ls0 ws0">−<span class="ff6">n</span></div><div class="t m0 x2c h3 y5e8 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x10e h5 y495 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y5ea ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y5eb ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x10 h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x2e h3 y544 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x2e h3 y5e7 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x14 h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1cb h3 y5e8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x2f h5 y5ee ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x3f h3 y5e8 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1a3 h3 y19 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xfc h5 y11 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x94 h3 y19 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1af h5 y14a ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y23c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y14c ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x1a0 h6 y10 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10c h3 y51 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x103 h3 y436 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x1c3 h6 y10 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x83 h3 y19 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x13c h5 y11 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x129 h3 y19 ff3 fs0 fc0 sc0 ls0 ws0">,<span class="_ _95"> </span><span class="ff2">(</span>e</div><div class="t m0 x16f h5 y11 ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x73 h4 y19 ff4 fs0 fc0 sc0 ls0 ws0">−<span class="_ _8"> </span><span class="ff2">1)</span></div><div class="t m0 x67 h5 y11 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x2c h3 y19 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x10e h5 y14a ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y23c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y14c ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x10 h6 y10 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x2e h3 y51 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x2e h3 y436 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x14 h6 y10 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x3e h3 y51 ff3 fs0 fc0 sc0 ls0 ws0">n<span class="ff2">!</span>x</div><div class="t m0 x40 h5 y5ef ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x195 h3 y436 ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!</span></div><div class="t m0 x41 h3 y5f0 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1a9 h6 y5f1 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x92 h3 y12f ff2 fs0 fc0 sc0 ls0 ws0">ln</div><div class="t m0 xfc h3 y14d ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 xe1 h4 y14f ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"> </span><span class="ff3">x</span></span></div><div class="t m0 x106 h6 y5f2 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xf1 h5 y5f3 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x94 h3 y12f ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1af h5 y2f2 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y5f4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y5f5 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x1a0 h6 y5f2 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x103 h3 y14d ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x10c h3 y14f ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x1c3 h6 y5f2 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x97 h3 y14d ff3 fs0 fc0 sc0 ls0 ws0">n<span class="ff2">!</span>x</div><div class="t m0 x1bd h5 y13 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x14c h3 y14f ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!</span></div><div class="t m0 x89 h3 y12f ff3 fs0 fc0 sc0 ls26 ws0">,x<span class="_ _96"></span><span class="ff2 ls0">cot<span class="_ _6"> </span><span class="ff3">x<span class="_ _65"> </span></span>=</span></div><div class="t m0 x10e h5 y2f2 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y5f4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y5f5 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x10 h4 y14d ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff4">−</span>4)</div><div class="t m0 x198 h5 y13 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x3e h3 y14d ff3 fs0 fc0 sc0 ls0 ws0">B</div><div class="t m0 x11c h5 y5f6 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x40 h3 y14d ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x13a h5 y13 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x5d h3 y14f ff2 fs0 fc0 sc0 ls0 ws0">(2<span class="ff3">i</span>)!</div><div class="t m0 x4b h3 y12f ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1ca h3 y5f7 ff2 fs0 fc0 sc0 ls0 ws0">tan<span class="_ _6"> </span><span class="ff3">x<span class="_ _13"> </span></span>=</div><div class="t m0 x1af h5 y579 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y131 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y5a ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x145 h4 y5f8 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff4">−</span>1)</div><div class="t m0 x83 h5 y133 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8">−<span class="ff5">1</span></span></div><div class="t m0 x14d h3 y43a ff2 fs0 fc0 sc0 ls0 ws0">2</div><div class="t m0 x89 h5 y20 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x12a h3 y43a ff2 fs0 fc0 sc0 ls0 ws0">(2</div><div class="t m0 xc9 h5 y20 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 xf7 h4 y43a ff4 fs0 fc0 sc0 ls0 ws0">−<span class="_ _8"> </span><span class="ff2">1)<span class="ff3">B</span></span></div><div class="t m0 x150 h5 y5f9 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x174 h3 y43a ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x11b h5 y20 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i<span class="ff8">−</span></span>1</div><div class="t m0 x171 h3 y5fa ff2 fs0 fc0 sc0 ls0 ws0">(2<span class="ff3">i</span>)!</div><div class="t m0 x154 h3 y5fb ff3 fs0 fc0 sc0 ls27 ws0">,ζ<span class="_ _97"></span><span class="ff2 ls0">(<span class="ff3">x</span><span class="ls28">)=</span></span></div><div class="t m0 x10e h5 y579 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y131 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y5a ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 xb5 h3 y43a ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x10 h3 y5fa ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 xaf h5 y50c ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x1b5 h3 y5f8 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x87 h3 y50f ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 xe1 h3 y338 ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 x94 h3 y5d ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1af h5 y5fc ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y331 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y13f ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 xd5 h3 y50f ff3 fs0 fc0 sc0 ls0 ws0">µ<span class="ff2">(</span>i<span class="ff2">)</span></div><div class="t m0 x10c h3 y338 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 xfd h5 y335 ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x104 h3 y5d ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1bb h4 y50f ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"> </span><span class="ff2">1)</span></span></div><div class="t m0 x46 h3 y338 ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 x2c h3 y5d ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x10e h5 y5fc ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y331 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y13f ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x10 h3 y50f ff3 fs0 fc0 sc0 ls0 ws0">φ<span class="ff2">(</span>i<span class="ff2">)</span></div><div class="t m0 xae h3 y338 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x2e h5 y335 ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x12c h3 y5d ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x2f h3 y32 ff2 fs0 fc0 sc0 ls0 ws0">Stieltjes In<span class="_ _5"></span>tegration</div><div class="t m0 xe1 h3 y158 ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2 ls29">)=</span></div><div class="t m0 x10a h6 y142 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x8c h5 y5fd ff6 fs1 fc0 sc0 ls0 ws0">p</div><div class="t m0 xd6 h3 y5fe ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x124 h4 y260 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"> </span><span class="ff3">p</span></span></div><div class="t m0 x83 h5 y5ff ff8 fs1 fc0 sc0 ls0 ws0">−<span class="ff6">x</span></div><div class="t m0 x1aa h3 y158 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 xc5 h3 y600 ff3 fs0 fc0 sc0 ls0 ws0">ζ</div><div class="t m0 x1a3 h5 y343 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x87 h3 y601 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x</span><span class="ls2a">)=</span></div><div class="t m0 x1a6 h5 y2ca ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y25c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y3a ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x145 h3 y359 ff3 fs0 fc0 sc0 ls0 ws0">d<span class="ff2">(</span>i<span class="ff2">)</span></div><div class="t m0 x128 h3 y4aa ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x103 h5 y602 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x13c h3 y601 ff2 fs0 fc0 sc0 ls0 ws0">where <span class="ff3">d</span>(<span class="ff3">n</span><span class="ls1">)=</span></div><div class="t m0 x179 h6 y458 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x157 h5 y62 ff6 fs1 fc0 sc0 ls0 ws0">d<span class="ff8">|</span>n</div><div class="t m0 xfa h3 y601 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="ff3">,</span></div><div class="t m0 x84 h4 y603 ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span>ζ<span class="_ _2"></span><span class="ff2">(</span>x<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"></span><span class="ff2">1)<span class="_ _64"> </span>=</span></span></div><div class="t m0 x1a6 h5 y64 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y3f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y46 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x145 h3 y67 ff3 fs0 fc0 sc0 ls0 ws0">S<span class="_ _15"></span><span class="ff2">(</span>i<span class="ff2">)</span></div><div class="t m0 x14a h3 y604 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x1ae h5 y605 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x129 h3 y606 ff2 fs0 fc0 sc0 ls0 ws0">where <span class="ff3">S<span class="_ _15"></span></span>(<span class="ff3">n</span><span class="ls1">)=</span></div><div class="t m0 xe8 h6 y1ef ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xe9 h5 y5ce ff6 fs1 fc0 sc0 ls0 ws0">d<span class="ff8">|</span>n</div><div class="t m0 x155 h3 y606 ff3 fs0 fc0 sc0 ls0 ws0">d,</div><div class="t m0 xc5 h3 y6c ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(2</span>n<span class="ff2 ls2b">)=</span></div><div class="t m0 x10a h3 y1ad ff2 fs0 fc0 sc0 ls0 ws0">2</div><div class="t m0 x117 h5 y15e ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">n<span class="ff8">−</span></span>1</div><div class="t m0 x10c h4 y1ad ff4 fs0 fc0 sc0 ls0 ws0">|<span class="ff3">B</span></div><div class="t m0 xd7 h5 y54d ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">n</span></div><div class="t m0 x14c h4 y1ad ff4 fs0 fc0 sc0 ls0 ws0">|</div><div class="t m0 xf5 h3 y78 ff2 fs0 fc0 sc0 ls0 ws0">(2<span class="ff3">n</span>)!</div><div class="t m0 x10d h3 y6c ff3 fs0 fc0 sc0 ls0 ws0">π</div><div class="t m0 x1b0 h5 y446 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">n</span></div><div class="t m0 x12a h4 y6c ff3 fs0 fc0 sc0 ls3 ws0">,n<span class="_ _a"></span><span class="ff4 ls0">∈<span class="_ _7"> </span><span class="ff9">N<span class="ff3">,</span></span></span></div><div class="t m0 x87 h3 y75 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xe1 h3 y368 ff2 fs0 fc0 sc0 ls0 ws0">sin<span class="_ _6"> </span><span class="ff3">x</span></div><div class="t m0 x6 h3 y303 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1a6 h5 y607 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y608 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y168 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x82 h4 y303 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff4">−</span>1)</div><div class="t m0 x118 h5 y3bd ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8">−<span class="ff5">1</span></span></div><div class="t m0 x10d h3 y75 ff2 fs0 fc0 sc0 ls0 ws0">(4</div><div class="t m0 x89 h5 y4b3 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x13d h4 y75 ff4 fs0 fc0 sc0 ls0 ws0">−<span class="_ _8"> </span><span class="ff2">2)<span class="ff3">B</span></span></div><div class="t m0 x192 h5 y527 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x7 h3 y75 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xda h5 y4b3 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x5 h3 y368 ff2 fs0 fc0 sc0 ls0 ws0">(2<span class="ff3">i</span>)!</div><div class="t m0 xdc h3 y303 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x3 h6 y1f9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x85 h4 y414 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4">−</span></div><div class="t m0 x9a h4 y1f9 ff4 fs0 fc0 sc0 ls0 ws0">√</div><div class="t m0 x140 h4 y414 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"> </span></span>4<span class="ff3">x</span></div><div class="t m0 x18d h3 y1b8 ff2 fs0 fc0 sc0 ls0 ws0">2<span class="ff3">x</span></div><div class="t m0 x107 h6 y1f9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x141 h5 yaa ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x6 h3 y609 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1a6 h5 yaa ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 ya9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y3c4 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x145 h4 y414 ff3 fs0 fc0 sc0 ls0 ws0">n<span class="ff2">(2</span>i<span class="_ _8"> </span><span class="ff2">+<span class="_ _8"> </span></span>n<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"> </span><span class="ff2">1)!</span></span></div><div class="t m0 xfd h3 y1b8 ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!(</span>n<span class="_ _8"> </span><span class="ff2">+<span class="_ _8"> </span></span>i<span class="ff2">)!</span></div><div class="t m0 x11a h3 y60a ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xf6 h5 y26d ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xca h3 y609 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x8f h3 yae ff3 fs0 fc0 sc0 ls0 ws0">e</div><div class="t m0 x1ca h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x140 h3 yae ff2 fs0 fc0 sc0 ls0 ws0">sin<span class="_ _6"> </span><span class="ff3">x<span class="_ _33"> </span></span>=</div><div class="t m0 x1a6 h5 y60b ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y2cf ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y59e ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x145 h3 y60c ff2 fs0 fc0 sc0 ls0 ws0">2</div><div class="t m0 x14a h5 y28f ff6 fs1 fc0 sc0 ls0 ws0">i/<span class="ff5">2</span></div><div class="t m0 x118 h3 y60c ff2 fs0 fc0 sc0 ls0 ws0">sin</div><div class="t m0 x1aa h5 y60d ff6 fs1 fc0 sc0 ls0 ws0">iπ</div><div class="t m0 x14d h5 yaf ff5 fs1 fc0 sc0 ls0 ws0">4</div><div class="t m0 x118 h3 y60e ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!</span></div><div class="t m0 xd8 h3 yae ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xd9 h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x1b8 h3 yae ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x85 h6 y1ca ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1ab h4 y60f ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4">−</span></div><div class="t m0 x87 h4 y96 ff4 fs0 fc0 sc0 ls0 ws0">√</div><div class="t m0 x88 h4 y60f ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"> </span><span class="ff3">x</span></span></div><div class="t m0 x1b4 h3 y610 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x6 h3 y611 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1a6 h5 y1cb ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y1c9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y532 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x10d h3 y60f ff2 fs0 fc0 sc0 ls0 ws0">(4<span class="ff3">i</span>)!</div><div class="t m0 x145 h3 y612 ff2 fs0 fc0 sc0 ls0 ws0">16</div><div class="t m0 x1ae h5 yb3 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xd6 h4 y95 ff4 fs0 fc0 sc0 ls0 ws0">√</div><div class="t m0 x104 h3 y612 ff2 fs0 fc0 sc0 ls0 ws0">2(2<span class="ff3">i</span>)!(2<span class="ff3">i<span class="_ _8"> </span></span>+<span class="_ _8"> </span>1)!</div><div class="t m0 x136 h3 y611 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x179 h5 y613 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x150 h3 y611 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x84 h6 y17a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xc7 h3 y53e ff2 fs0 fc0 sc0 ls0 ws0">arcsin<span class="_ _6"> </span><span class="ff3">x</span></div><div class="t m0 xc6 h3 y614 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x106 h6 y17a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x130 h5 y615 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6 h3 y2d3 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1a6 h5 y17b ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y294 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y5a5 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x97 h3 y53e ff2 fs0 fc0 sc0 ls0 ws0">4</div><div class="t m0 x14c h5 y616 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x10d h3 y53e ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!</span></div><div class="t m0 x134 h5 y616 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x145 h3 y614 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">i<span class="_ _8"> </span></span>+<span class="_ _8"> </span>1)(2<span class="ff3">i<span class="_ _8"> </span></span>+<span class="_ _8"> </span>1)!</div><div class="t m0 xf7 h3 y2d3 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xca h5 y617 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 xcb h3 y2d3 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 xef h3 y342 ff2 fs0 fc0 sc0 ls0 ws0">If <span class="ff3">G </span>is con<span class="_ _5"></span>tinuous in the in<span class="_ _5"></span>terv<span class="_ _5"></span>al [<span class="ff3">a,<span class="_ _6"> </span>b</span>] and <span class="ff3">F<span class="_ _1e"> </span></span>is nondecreasing then</div><div class="t m0 x13a h6 y458 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x31 h5 y4a9 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x10f h5 y618 ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x30 h3 y619 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 xef h4 y61a ff2 fs0 fc0 sc0 ls0 ws0">exists.<span class="_ _34"> </span>If <span class="ff3">a<span class="_ _7"> </span><span class="ff4">≤<span class="_ _7"> </span></span>b<span class="_ _7"> </span><span class="ff4">≤<span class="_ _7"> </span></span>c </span>then</div><div class="t m0 x178 h6 y603 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xab h5 y5ce ff6 fs1 fc0 sc0 ls0 ws0">c</div><div class="t m0 x5c h5 y15d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x170 h3 y69 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls1">)=</span></div><div class="t m0 x41 h6 y603 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x9f h5 y5ce ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x42 h5 y15d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x30 h3 y69 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls9">)+</span></div><div class="t m0 x1a h6 y603 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x63 h5 y5ce ff6 fs1 fc0 sc0 ls0 ws0">c</div><div class="t m0 x19 h5 y15d ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1c h3 y69 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)</span>.</div><div class="t m0 xef h3 y61b ff2 fs0 fc0 sc0 ls0 ws0">If the in<span class="_ _5"></span>tegrals inv<span class="_ _5"></span>olv<span class="_ _5"></span>ed exist</div><div class="t m0 x5a h6 y160 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x5b h5 y449 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x159 h5 y3bc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 xe h6 y61c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15b h3 y527 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2 ls9">)+</span>H<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 xcc h6 y61c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x6b h3 y527 ff3 fs0 fc0 sc0 ls0 ws0">dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls1">)=</span></div><div class="t m0 x17b h6 y160 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x186 h5 y449 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x163 h5 y3bc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x17d h3 y527 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls9">)+</span></div><div class="t m0 x64 h6 y160 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbc h5 y449 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1e h5 y3bc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x37 h3 y527 ff3 fs0 fc0 sc0 ls0 ws0">H<span class="_ _2"></span><span class="ff2">(<span class="_ _5"></span><span class="ff3">x<span class="ff2">)<span class="_ _8"> </span></span>dF<span class="_ _2"></span><span class="ff2">(</span>x<span class="ff2">)</span>,</span></span></div><div class="t m0 x5a h6 y16a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x5b h5 ya7 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x159 h5 y61d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 xe h3 ya9 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>d</div><div class="t m0 x10e h6 y61e ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x69 h3 ya9 ff3 fs0 fc0 sc0 ls0 ws0">F<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls2">)+</span>H<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 x122 h6 y61e ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x31 h3 ya9 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x17b h6 y16a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x186 h5 ya7 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x163 h5 y61d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x17d h3 ya9 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls9">)+</span></div><div class="t m0 x64 h6 y16a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbc h5 ya7 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1e h5 y61d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x37 h3 ya9 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dH<span class="_ _2"></span><span class="ff2">(</span>x<span class="ff2">)</span>,</div><div class="t m0 x47 h6 y61f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x2a h5 y620 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x14e h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x126 h4 y416 ff3 fs0 fc0 sc0 ls0 ws0">c<span class="_ _8"> </span><span class="ff4">·<span class="_ _8"> </span></span>G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls1">)=</span></div><div class="t m0 x4a h6 y621 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x13a h5 y620 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 xce h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x1b7 h3 y416 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>d</div><div class="t m0 x112 h6 y3c4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x11d h4 y416 ff3 fs0 fc0 sc0 ls0 ws0">c<span class="_ _8"> </span><span class="ff4">·<span class="_ _8"> </span></span>F<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 x62 h6 y3c4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x36 h3 y416 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">c</span></div><div class="t m0 x1d h6 y621 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbc h5 y620 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x54 h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x168 h3 y416 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)</span>,</div><div class="t m0 x14e h6 y479 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x126 h5 y270 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x156 h5 y47b ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x9e h4 y622 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls1">)=</span>G<span class="ff2">(</span>b<span class="ff2">)</span>F<span class="_ _6"> </span><span class="ff2">(</span>b<span class="ff2">)<span class="_ _8"> </span><span class="ff4">−<span class="_ _8"> </span></span></span>G<span class="ff2">(</span>a<span class="ff2">)</span>F<span class="_ _6"> </span><span class="ff2">(</span>a<span class="ff2">)<span class="_ _8"> </span><span class="ff4">−</span></span></div><div class="t m0 xbb h6 y479 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x54 h5 y270 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1d h5 y47b ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 xbc h3 y622 ff3 fs0 fc0 sc0 ls0 ws0">F<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dG<span class="ff2">(</span>x<span class="ff2">)</span>.</div><div class="t m0 xef h3 y2d0 ff2 fs0 fc0 sc0 ls0 ws0">If<span class="_ _7"> </span>the<span class="_ _8"> </span>integrals<span class="_ _8"> </span>inv<span class="_ _5"></span>olv<span class="_ _5"></span>ed<span class="_ _7"> </span>exist,<span class="_ _7"> </span>and<span class="_ _8"> </span><span class="ff3">F<span class="_ _0"> </span></span>p<span class="_ _3"></span>ossesses<span class="_ _7"> </span>a<span class="_ _8"> </span>deriv<span class="_ _5"></span>ativ<span class="_ _5"></span>e<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 x167 h5 y623 ff8 fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 xba h3 y2d0 ff2 fs0 fc0 sc0 ls0 ws0">at<span class="_ _7"> </span>ev<span class="_ _5"></span>ery</div><div class="t m0 xef h3 y208 ff2 fs0 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>oin<span class="_ _5"></span>t in [<span class="ff3">a,<span class="_ _8"> </span>b<span class="_ _5"></span><span class="ff2">] then</span></span></div><div class="t m0 x10 h6 yb6 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1b5 h5 ya0 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 xae h5 y3cc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x5d h3 y17f ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 lsf">)=</span></div><div class="t m0 x4d h6 yb6 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x13b h5 ya0 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x11d h5 y3cc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x7b h3 y17f ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)</span>F</div><div class="t m0 x1b h5 y9e ff8 fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x19 h3 y17f ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x</span>)<span class="_ _6"> </span><span class="ff3">dx.</span></div><div class="t m0 x116 h3 y297 ff2 fs0 fc0 sc0 ls0 ws0">Cramer’s Rule</div><div class="t m0 x72 h5 y299 ff5 fs1 fc0 sc0 ls0 ws0">00<span class="_ _11"> </span>47<span class="_ _11"> </span>18<span class="_ _1e"> </span>76<span class="_ _11"> </span>29<span class="_ _11"> </span>93<span class="_ _11"> </span>85<span class="_ _11"> </span>34<span class="_ _1e"> </span>61<span class="_ _11"> </span>52</div><div class="t m0 x72 h5 y2d8 ff5 fs1 fc0 sc0 ls0 ws0">86<span class="_ _11"> </span>11<span class="_ _11"> </span>57<span class="_ _1e"> </span>28<span class="_ _11"> </span>70<span class="_ _11"> </span>39<span class="_ _11"> </span>94<span class="_ _11"> </span>45<span class="_ _1e"> </span>02<span class="_ _11"> </span>63</div><div class="t m0 x72 h5 y213 ff5 fs1 fc0 sc0 ls0 ws0">95<span class="_ _11"> </span>80<span class="_ _11"> </span>22<span class="_ _1e"> </span>67<span class="_ _11"> </span>38<span class="_ _11"> </span>71<span class="_ _11"> </span>49<span class="_ _11"> </span>56<span class="_ _1e"> </span>13<span class="_ _11"> </span>04</div><div class="t m0 x72 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">59<span class="_ _11"> </span>96<span class="_ _11"> </span>81<span class="_ _1e"> </span>33<span class="_ _11"> </span>07<span class="_ _11"> </span>48<span class="_ _11"> </span>72<span class="_ _11"> </span>60<span class="_ _1e"> </span>24<span class="_ _11"> </span>15</div><div class="t m0 x72 h5 y18e ff5 fs1 fc0 sc0 ls0 ws0">73<span class="_ _11"> </span>69<span class="_ _11"> </span>90<span class="_ _1e"> </span>82<span class="_ _11"> </span>44<span class="_ _11"> </span>17<span class="_ _11"> </span>58<span class="_ _11"> </span>01<span class="_ _1e"> </span>35<span class="_ _11"> </span>26</div><div class="t m0 x72 h5 y2a3 ff5 fs1 fc0 sc0 ls0 ws0">68<span class="_ _11"> </span>74<span class="_ _11"> </span>09<span class="_ _1e"> </span>91<span class="_ _11"> </span>83<span class="_ _11"> </span>55<span class="_ _11"> </span>27<span class="_ _11"> </span>12<span class="_ _1e"> </span>46<span class="_ _11"> </span>30</div><div class="t m0 x72 h5 y2a9 ff5 fs1 fc0 sc0 ls0 ws0">37<span class="_ _11"> </span>08<span class="_ _11"> </span>75<span class="_ _1e"> </span>19<span class="_ _11"> </span>92<span class="_ _11"> </span>84<span class="_ _11"> </span>66<span class="_ _11"> </span>23<span class="_ _1e"> </span>50<span class="_ _11"> </span>41</div><div class="t m0 x72 h5 y489 ff5 fs1 fc0 sc0 ls0 ws0">14<span class="_ _11"> </span>25<span class="_ _11"> </span>36<span class="_ _1e"> </span>40<span class="_ _11"> </span>51<span class="_ _11"> </span>62<span class="_ _11"> </span>03<span class="_ _11"> </span>77<span class="_ _1e"> </span>88<span class="_ _11"> </span>99</div><div class="t m0 x72 h5 y624 ff5 fs1 fc0 sc0 ls0 ws0">21<span class="_ _11"> </span>32<span class="_ _11"> </span>43<span class="_ _1e"> </span>54<span class="_ _11"> </span>65<span class="_ _11"> </span>06<span class="_ _11"> </span>10<span class="_ _11"> </span>89<span class="_ _1e"> </span>97<span class="_ _11"> </span>78</div><div class="t m0 x72 h5 y3d6 ff5 fs1 fc0 sc0 ls0 ws0">42<span class="_ _11"> </span>53<span class="_ _11"> </span>64<span class="_ _1e"> </span>05<span class="_ _11"> </span>16<span class="_ _11"> </span>20<span class="_ _11"> </span>31<span class="_ _11"> </span>98<span class="_ _1e"> </span>79<span class="_ _11"> </span>87</div><div class="t m0 x35 h3 y297 ff2 fs0 fc0 sc0 ls0 ws0">Fib<span class="_ _3"></span>onacci Num<span class="_ _5"></span>b<span class="_ _3"></span>ers</div><div class="t m0 x81 h3 y2ea ff2 fs0 fc0 sc0 ls0 ws0">If w<span class="_ _5"></span>e hav<span class="_ _5"></span>e equations:</div><div class="t m0 xc8 h3 y1d8 ff3 fs0 fc0 sc0 ls0 ws0">a</div><div class="t m0 x12f h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff6">,</span>1</div><div class="t m0 x143 h3 y1d8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x107 h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x141 h3 y1d8 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x149 h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff6">,</span>2</div><div class="t m0 x13e h3 y1d8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x10a h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10b h4 y1d8 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4 ls4">···<span class="_ _15"></span></span>+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x129 h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff6">,n</span></div><div class="t m0 x89 h3 y1d8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x12a h5 y188 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc3 h3 y1d8 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">b</span></div><div class="t m0 x171 h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xc8 h3 y625 ff3 fs0 fc0 sc0 ls0 ws0">a</div><div class="t m0 x12f h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">,</span>1</div><div class="t m0 x143 h3 y625 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x107 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x141 h3 y625 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x149 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">,</span>2</div><div class="t m0 x13e h3 y625 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x10a h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10b h4 y625 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4 ls4">···<span class="_ _15"></span></span>+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x129 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">,n</span></div><div class="t m0 x89 h3 y625 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x12a h5 y18d ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc3 h3 y625 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">b</span></div><div class="t m0 x171 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x143 h3 y316 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x143 h3 y1da ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x143 h3 y571 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x10a h3 y316 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x10a h3 y1da ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x10a h3 y571 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x4 h3 y316 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x4 h3 y1da ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x4 h3 y571 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 xc8 h3 y566 ff3 fs0 fc0 sc0 ls0 ws0">a</div><div class="t m0 xe2 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n,<span class="ff5">1</span></div><div class="t m0 x143 h3 y566 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x107 h5 y198 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x141 h3 y566 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x149 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n,<span class="ff5">2</span></div><div class="t m0 x8b h3 y566 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x102 h5 y198 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1ac h4 y566 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4 ls4">···<span class="_ _15"></span></span>+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x190 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n,n</div><div class="t m0 xd8 h3 y566 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xd9 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc9 h3 y566 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">b</span></div><div class="t m0 x1b3 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x81 h3 y4db ff2 fs0 fc0 sc0 ls0 ws0">Let<span class="_ _7"> </span><span class="ff3">A<span class="_ _7"> </span></span><span class="ls1">=(<span class="_ _b"></span><span class="ff3 ls0">a</span></span></div><div class="t m0 x93 h5 y199 ff6 fs1 fc0 sc0 ls0 ws0">i,j</div><div class="t m0 x143 h3 y4db ff2 fs0 fc0 sc0 ls0 ws0">)<span class="_ _7"> </span>and<span class="_ _7"> </span><span class="ff3">B<span class="_ _7"> </span></span>b<span class="_ _3"></span>e<span class="_ _7"> </span>the<span class="_ _7"> </span>column<span class="_ _8"> </span>matrix<span class="_ _7"> </span>(<span class="ff3">b</span></div><div class="t m0 xcb h5 y199 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x136 h3 y4db ff2 fs0 fc0 sc0 ls0 ws0">).<span class="_ _34"> </span>Then</div><div class="t m0 x81 h4 y218 ff2 fs0 fc0 sc0 ls0 ws0">there<span class="_ _0"> </span>is a<span class="_ _0"> </span>unique<span class="_ _0"> </span>solution<span class="_ _0"> </span>iff det<span class="_ _8"> </span><span class="ff3">A<span class="_ _7"> </span><span class="ff4"></span></span>= 0.<span class="_ _11"> </span>Let<span class="_ _0"> </span><span class="ff3">A</span></div><div class="t m0 x14f h5 y19a ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xdc h3 y218 ff2 fs0 fc0 sc0 ls10 ws0">be <span class="ff3 ls0">A</span></div><div class="t m0 x81 h3 y569 ff2 fs0 fc0 sc0 ls0 ws0">with column <span class="ff3">i </span>replaced by <span class="ff3">B<span class="_ _3"></span></span>.<span class="_ _34"> </span>Then</div><div class="t m0 xf4 h3 y626 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x8b h5 ye8 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x102 h3 y627 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 xf5 h3 y2e3 ff2 fs0 fc0 sc0 ls0 ws0">det<span class="_ _6"> </span><span class="ff3">A</span></div><div class="t m0 xd7 h5 yea ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x124 h3 y628 ff2 fs0 fc0 sc0 ls0 ws0">det<span class="_ _6"> </span><span class="ff3">A</span></div><div class="t m0 x125 h3 y629 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6d h3 y62a ff2 fs0 fc0 sc0 ls0 ws0">1<span class="ff3">,<span class="_ _6"> </span></span>1<span class="ff3">,<span class="_ _8"> </span></span>2<span class="_ _5"></span><span class="ff3">,<span class="_ _6"> </span><span class="ff2">3</span>,<span class="_ _8"> </span><span class="ff2">5<span class="_ _5"></span><span class="ff3">,<span class="_ _6"> </span><span class="ff2">8</span>,<span class="_ _8"> </span><span class="ff2">13<span class="_ _5"></span><span class="ff3">,<span class="_ _6"> </span><span class="ff2">21</span>,<span class="_ _8"> </span><span class="ff2">34<span class="_ _5"></span><span class="ff3">,<span class="_ _6"> </span><span class="ff2">55</span>,<span class="_ _6"> </span><span class="ff2">89</span><span class="ls4">,...</span></span></span></span></span></span></span></span></div><div class="t m0 x6d h3 y62b ff2 fs0 fc0 sc0 ls0 ws0">Definitions:</div><div class="t m0 x6d h3 y62c ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x13b h5 y62d ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x7b h3 y62e ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 x6e h5 y62d ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8">−<span class="ff5">1</span></span></div><div class="t m0 x1cc h3 y62e ff2 fs0 fc0 sc0 ls0 ws0">+<span class="ff3">F</span></div><div class="t m0 xb1 h5 y62d ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8">−<span class="ff5">2</span></span></div><div class="t m0 xd0 h3 y62e ff3 fs0 fc0 sc0 ls3 ws0">,F</div><div class="t m0 x7e h5 y62d ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x23 h3 y62e ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 x183 h5 y62d ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x38 h3 y62e ff2 fs0 fc0 sc0 ls1 ws0">=1<span class="_ _b"></span><span class="ff3 ls0">,</span></div><div class="t m0 x4f h3 y62f ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x62 h5 y3d2 ff8 fs1 fc0 sc0 ls0 ws0">−<span class="ff6">i</span></div><div class="t m0 x63 h4 y630 ff2 fs0 fc0 sc0 ls1 ws0">=(<span class="_ _b"></span><span class="ff4 ls0">−<span class="ff2">1)</span></span></div><div class="t m0 x1f h5 y631 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8">−<span class="ff5">1</span></span></div><div class="t m0 x7e h3 y630 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x23 h5 y3d2 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x7d h3 y630 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x18 h3 y37d ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x6e h5 y195 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xb8 h3 y37d ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x52 h5 y5e1 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x63 h5 y31b ff8 fs1 fc0 sc0 ls0 ws0">√</div><div class="t m0 x1c h5 y632 ff5 fs1 fc0 sc0 ls0 ws0">5</div><div class="t m0 x1a8 h6 yd3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x166 h3 y37d ff3 fs0 fc0 sc0 ls0 ws0">φ</div><div class="t m0 x168 h5 yd1 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xdf h4 y37d ff4 fs0 fc0 sc0 ls0 ws0">−</div><div class="t m0 xbd h3 y565 ff2 fs0 fc0 sc0 ls0 ws0">ˆ</div><div class="t m0 x65 h3 y37d ff3 fs0 fc0 sc0 ls0 ws0">φ</div><div class="t m0 x66 h5 yd1 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x23 h6 yd3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbf h3 y37d ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x6d h3 y21a ff2 fs0 fc0 sc0 ls0 ws0">Cassini’s iden<span class="_ _5"></span>tity:<span class="_ _34"> </span>for <span class="ff3 ls1">i></span>0:</div><div class="t m0 x7a h3 y633 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x169 h5 y1e3 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">+1</span></div><div class="t m0 x62 h3 y634 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x1b h5 y1e3 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8">−<span class="ff5">1</span></span></div><div class="t m0 xb1 h4 y634 ff4 fs0 fc0 sc0 ls0 ws0">−<span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x168 h5 y3d6 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa3 h5 y2ae ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x7c h4 y634 ff2 fs0 fc0 sc0 ls1 ws0">=(<span class="_ _b"></span><span class="ff4 ls0">−<span class="ff2">1)</span></span></div><div class="t m0 xd2 h5 y3d6 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xc0 h3 y634 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6d h3 yea ff2 fs0 fc0 sc0 ls0 ws0">Additiv<span class="_ _5"></span>e rule:</div><div class="t m0 xb6 h3 y2bb ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x7a h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+</span>k</div><div class="t m0 x113 h3 y2bb ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 xde h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x1c h3 y2bb ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 xb9 h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+1</span></div><div class="t m0 xdf h3 y2bb ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x66 h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">k<span class="ff8">−<span class="ff5">1</span></span></div><div class="t m0 xba h3 y2bb ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 xc0 h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x38 h3 y2bb ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x4e h3 y636 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x187 h5 y22a ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">n</span></div><div class="t m0 x6e h3 y637 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 x51 h5 y22a ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x52 h3 y637 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x1b2 h5 y22a ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+1</span></div><div class="t m0 x37 h3 y637 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x7e h5 y22a ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8">−<span class="ff5">1</span></span></div><div class="t m0 x1a7 h3 y637 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x165 h5 y22a ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x22 h3 y637 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6d h3 y638 ff2 fs0 fc0 sc0 ls0 ws0">Calculation by matrices:</div><div class="t m0 x6d h6 y19f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xfb h3 y639 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 xa1 h5 y63a ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8">−<span class="ff5">2</span></span></div><div class="t m0 x17a h3 y63b ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x63 h5 y63a ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8">−<span class="ff5">1</span></span></div><div class="t m0 xfb h3 y63c ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 xa1 h5 y63d ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8">−<span class="ff5">1</span></span></div><div class="t m0 x51 h3 y63c ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x180 h5 y63d ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xcf h6 y19f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x37 h3 y63e ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x55 h6 y19f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x66 h3 y63b ff2 fs0 fc0 sc0 ls5 ws0">01</div><div class="t m0 x66 h3 y63c ff2 fs0 fc0 sc0 ls5 ws0">11</div><div class="t m0 xc0 h6 y19f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x19b h5 y108 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x39 h3 y63f ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x18a h3 y1e4 ff2 fs0 fc0 sc0 ls0 ws0">The<span class="_ _7"> </span>Fib<span class="_ _3"></span>onacci<span class="_ _7"> </span>num<span class="_ _5"></span>ber<span class="_ _7"> </span>system:</div><div class="t m0 x18a h3 y640 ff2 fs0 fc0 sc0 ls0 ws0">Ev<span class="_ _5"></span>ery<span class="_ _1e"> </span>in<span class="_ _5"></span>teger<span class="_ _1e"> </span><span class="ff3">n<span class="_ _1e"> </span></span>has<span class="_ _1e"> </span>a<span class="_ _1e"> </span>unique</div><div class="t m0 x18a h3 y641 ff2 fs0 fc0 sc0 ls0 ws0">represen<span class="_ _5"></span>tation</div><div class="t m0 x29 h3 y4e9 ff3 fs0 fc0 sc0 ls0 ws0">n<span class="_ _7"> </span><span class="ff2">=<span class="_ _7"> </span></span>F</div><div class="t m0 xff h5 y642 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x15b h7 y643 ffc fs2 fc0 sc0 ls0 ws0">1</div><div class="t m0 x5c h3 y4e9 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x10e h5 y642 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x69 h7 y643 ffc fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3d h4 y4e9 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4 ls4">···<span class="_ _15"></span></span>+<span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x40 h5 y642 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x1cd h7 y643 ffa fs2 fc0 sc0 ls0 ws0">m</div><div class="t m0 x42 h3 y4e9 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x18a h3 y10c ff2 fs0 fc0 sc0 ls0 ws0">where<span class="_ _34"> </span><span class="ff3">k</span></div><div class="t m0 x126 h5 y644 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x15f h4 y10c ff4 fs0 fc0 sc0 ls0 ws0">≥<span class="_ _34"> </span><span class="ff3">k</span></div><div class="t m0 x10e h5 y644 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">+1</span></div><div class="t m0 x138 h3 y10c ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _7"> </span>2<span class="_ _34"> </span>for<span class="_ _1e"> </span>all<span class="_ _0"> </span><span class="ff3">i</span>,</div><div class="t m0 x18a h4 y4f4 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _7"> </span><span class="ff4">≤<span class="_ _7"> </span><span class="ff3 ls1">i<m<span class="_ _15"></span></span></span>and <span class="ff3">k</span></div><div class="t m0 x3d h5 y1eb ff6 fs1 fc0 sc0 ls0 ws0">m</div><div class="t m0 x2e h4 y4f4 ff4 fs0 fc0 sc0 ls0 ws0">≥<span class="_ _7"> </span><span class="ff2">2.</span></div><div class="t m0 x81 h3 y645 ff2 fs0 fc0 sc0 ls0 ws0">Impro<span class="_ _5"></span>vemen<span class="_ _5"></span>t<span class="_ _12"> </span>mak<span class="_ _5"></span>es<span class="_ _12"> </span>strait<span class="_ _12"> </span>roads,<span class="_ _36"> </span>but<span class="_ _12"> </span>the<span class="_ _12"> </span>crooked</div><div class="t m0 x81 h3 y3e1 ff2 fs0 fc0 sc0 ls0 ws0">roads without Improv<span class="_ _5"></span>emen<span class="_ _5"></span>t, are roads of Genius.</div><div class="t m0 x81 h3 y2bd ff2 fs0 fc0 sc0 ls0 ws0">– William Blake (The Marriage of Hea<span class="_ _5"></span>v<span class="_ _5"></span>en and Hell)</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div></div>
|