1
0
mirror of https://github.com/pdf2htmlEX/pdf2htmlEX.git synced 2024-12-22 13:00:08 +00:00
pdf2htmlEX/demo/cheat10.page
2013-09-28 13:30:57 +08:00

2 lines
190 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<div class="pd w0 h0"><div id="pfa" class="pf" data-page-no="a"><div class="pc pca"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Theoretical<span class="_ _0"> </span>Computer<span class="_ _0"> </span>Science<span class="_ _0"> </span>Cheat<span class="_ _0"> </span>Sheet</div><div class="t m0 xf7 h3 y2 ff2 fs0 fc0 sc0 ls0 ws0">Series<span class="_ _94"> </span>Esc<span class="_ _5"></span>hers Knot</div><div class="t m0 x1ba h3 y3 ff2 fs0 fc0 sc0 ls0 ws0">Expansions:</div><div class="t m0 x92 h3 y544 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x1c9 h4 y5e7 ff2 fs0 fc0 sc0 ls0 ws0">(1<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff3">x</span></span>)</div><div class="t m0 x1ca h5 y34c ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+1</span></div><div class="t m0 xe2 h3 y5e8 ff2 fs0 fc0 sc0 ls0 ws0">ln</div><div class="t m0 xe5 h3 y544 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 xe3 h4 y5e7 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff3">x</span></span></div><div class="t m0 x94 h3 y5e9 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1af h5 y495 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y5ea ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y5eb ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x145 h3 y5e8 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">H</span></div><div class="t m0 xd6 h5 y5ec ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+</span>i</div><div class="t m0 x129 h4 y5e8 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">H</span></div><div class="t m0 x12a h5 y5ec ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x1b8 h3 y5e8 ff2 fs0 fc0 sc0 ls0 ws0">)</div><div class="t m0 xc9 h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x8e h3 y544 ff3 fs0 fc0 sc0 ls0 ws0">n<span class="_ _8"> </span><span class="ff2">+<span class="_ _8"> </span></span>i</div><div class="t m0 x192 h3 y5ed ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x8 h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x150 h3 y5e8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x157 h5 y5ee ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xe9 h3 y5e8 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x9c h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x46 h3 y544 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x46 h3 y5e7 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x9d h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x2b h5 y576 ff8 fs1 fc0 sc0 ls0 ws0"><span class="ff6">n</span></div><div class="t m0 x2c h3 y5e8 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x10e h5 y495 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y5ea ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y5eb ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x10 h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x2e h3 y544 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x2e h3 y5e7 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x14 h6 yb ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1cb h3 y5e8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x2f h5 y5ee ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x3f h3 y5e8 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1a3 h3 y19 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xfc h5 y11 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x94 h3 y19 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1af h5 y14a ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y23c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y14c ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x1a0 h6 y10 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10c h3 y51 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x103 h3 y436 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x1c3 h6 y10 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x83 h3 y19 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x13c h5 y11 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x129 h3 y19 ff3 fs0 fc0 sc0 ls0 ws0">,<span class="_ _95"> </span><span class="ff2">(</span>e</div><div class="t m0 x16f h5 y11 ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x73 h4 y19 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff2">1)</span></div><div class="t m0 x67 h5 y11 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x2c h3 y19 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x10e h5 y14a ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y23c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y14c ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x10 h6 y10 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x2e h3 y51 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x2e h3 y436 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x14 h6 y10 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x3e h3 y51 ff3 fs0 fc0 sc0 ls0 ws0">n<span class="ff2">!</span>x</div><div class="t m0 x40 h5 y5ef ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x195 h3 y436 ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!</span></div><div class="t m0 x41 h3 y5f0 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1a9 h6 y5f1 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x92 h3 y12f ff2 fs0 fc0 sc0 ls0 ws0">ln</div><div class="t m0 xfc h3 y14d ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 xe1 h4 y14f ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff3">x</span></span></div><div class="t m0 x106 h6 y5f2 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xf1 h5 y5f3 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x94 h3 y12f ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1af h5 y2f2 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y5f4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y5f5 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x1a0 h6 y5f2 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x103 h3 y14d ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x10c h3 y14f ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x1c3 h6 y5f2 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x97 h3 y14d ff3 fs0 fc0 sc0 ls0 ws0">n<span class="ff2">!</span>x</div><div class="t m0 x1bd h5 y13 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x14c h3 y14f ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!</span></div><div class="t m0 x89 h3 y12f ff3 fs0 fc0 sc0 ls26 ws0">,x<span class="_ _96"></span><span class="ff2 ls0">cot<span class="_ _6"> </span><span class="ff3">x<span class="_ _65"> </span></span>=</span></div><div class="t m0 x10e h5 y2f2 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y5f4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y5f5 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x10 h4 y14d ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff4"></span>4)</div><div class="t m0 x198 h5 y13 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x3e h3 y14d ff3 fs0 fc0 sc0 ls0 ws0">B</div><div class="t m0 x11c h5 y5f6 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x40 h3 y14d ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x13a h5 y13 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x5d h3 y14f ff2 fs0 fc0 sc0 ls0 ws0">(2<span class="ff3">i</span>)!</div><div class="t m0 x4b h3 y12f ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1ca h3 y5f7 ff2 fs0 fc0 sc0 ls0 ws0">tan<span class="_ _6"> </span><span class="ff3">x<span class="_ _13"> </span></span>=</div><div class="t m0 x1af h5 y579 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y131 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y5a ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x145 h4 y5f8 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff4"></span>1)</div><div class="t m0 x83 h5 y133 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 x14d h3 y43a ff2 fs0 fc0 sc0 ls0 ws0">2</div><div class="t m0 x89 h5 y20 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x12a h3 y43a ff2 fs0 fc0 sc0 ls0 ws0">(2</div><div class="t m0 xc9 h5 y20 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 xf7 h4 y43a ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff2">1)<span class="ff3">B</span></span></div><div class="t m0 x150 h5 y5f9 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x174 h3 y43a ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x11b h5 y20 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i<span class="ff8"></span></span>1</div><div class="t m0 x171 h3 y5fa ff2 fs0 fc0 sc0 ls0 ws0">(2<span class="ff3">i</span>)!</div><div class="t m0 x154 h3 y5fb ff3 fs0 fc0 sc0 ls27 ws0">,ζ<span class="_ _97"></span><span class="ff2 ls0">(<span class="ff3">x</span><span class="ls28">)=</span></span></div><div class="t m0 x10e h5 y579 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y131 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y5a ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 xb5 h3 y43a ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x10 h3 y5fa ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 xaf h5 y50c ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x1b5 h3 y5f8 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x87 h3 y50f ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 xe1 h3 y338 ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 x94 h3 y5d ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1af h5 y5fc ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x1a6 h6 y331 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1a6 h5 y13f ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 xd5 h3 y50f ff3 fs0 fc0 sc0 ls0 ws0">µ<span class="ff2">(</span>i<span class="ff2">)</span></div><div class="t m0 x10c h3 y338 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 xfd h5 y335 ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x104 h3 y5d ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1bb h4 y50f ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff2">1)</span></span></div><div class="t m0 x46 h3 y338 ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 x2c h3 y5d ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x10e h5 y5fc ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 xac h6 y331 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h5 y13f ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x10 h3 y50f ff3 fs0 fc0 sc0 ls0 ws0">φ<span class="ff2">(</span>i<span class="ff2">)</span></div><div class="t m0 xae h3 y338 ff3 fs0 fc0 sc0 ls0 ws0">i</div><div class="t m0 x2e h5 y335 ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x12c h3 y5d ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x2f h3 y32 ff2 fs0 fc0 sc0 ls0 ws0">Stieltjes In<span class="_ _5"></span>tegration</div><div class="t m0 xe1 h3 y158 ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2 ls29">)=</span></div><div class="t m0 x10a h6 y142 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x8c h5 y5fd ff6 fs1 fc0 sc0 ls0 ws0">p</div><div class="t m0 xd6 h3 y5fe ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x124 h4 y260 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff3">p</span></span></div><div class="t m0 x83 h5 y5ff ff8 fs1 fc0 sc0 ls0 ws0"><span class="ff6">x</span></div><div class="t m0 x1aa h3 y158 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 xc5 h3 y600 ff3 fs0 fc0 sc0 ls0 ws0">ζ</div><div class="t m0 x1a3 h5 y343 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x87 h3 y601 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x</span><span class="ls2a">)=</span></div><div class="t m0 x1a6 h5 y2ca ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y25c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y3a ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x145 h3 y359 ff3 fs0 fc0 sc0 ls0 ws0">d<span class="ff2">(</span>i<span class="ff2">)</span></div><div class="t m0 x128 h3 y4aa ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x103 h5 y602 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x13c h3 y601 ff2 fs0 fc0 sc0 ls0 ws0">where <span class="ff3">d</span>(<span class="ff3">n</span><span class="ls1">)=</span></div><div class="t m0 x179 h6 y458 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x157 h5 y62 ff6 fs1 fc0 sc0 ls0 ws0">d<span class="ff8">|</span>n</div><div class="t m0 xfa h3 y601 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="ff3">,</span></div><div class="t m0 x84 h4 y603 ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span>ζ<span class="_ _2"></span><span class="ff2">(</span>x<span class="_ _8"> </span><span class="ff4"><span class="_ _8"></span><span class="ff2">1)<span class="_ _64"> </span>=</span></span></div><div class="t m0 x1a6 h5 y64 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y3f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y46 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x145 h3 y67 ff3 fs0 fc0 sc0 ls0 ws0">S<span class="_ _15"></span><span class="ff2">(</span>i<span class="ff2">)</span></div><div class="t m0 x14a h3 y604 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x1ae h5 y605 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x129 h3 y606 ff2 fs0 fc0 sc0 ls0 ws0">where <span class="ff3">S<span class="_ _15"></span></span>(<span class="ff3">n</span><span class="ls1">)=</span></div><div class="t m0 xe8 h6 y1ef ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xe9 h5 y5ce ff6 fs1 fc0 sc0 ls0 ws0">d<span class="ff8">|</span>n</div><div class="t m0 x155 h3 y606 ff3 fs0 fc0 sc0 ls0 ws0">d,</div><div class="t m0 xc5 h3 y6c ff3 fs0 fc0 sc0 ls0 ws0">ζ<span class="_ _15"></span><span class="ff2">(2</span>n<span class="ff2 ls2b">)=</span></div><div class="t m0 x10a h3 y1ad ff2 fs0 fc0 sc0 ls0 ws0">2</div><div class="t m0 x117 h5 y15e ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">n<span class="ff8"></span></span>1</div><div class="t m0 x10c h4 y1ad ff4 fs0 fc0 sc0 ls0 ws0">|<span class="ff3">B</span></div><div class="t m0 xd7 h5 y54d ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">n</span></div><div class="t m0 x14c h4 y1ad ff4 fs0 fc0 sc0 ls0 ws0">|</div><div class="t m0 xf5 h3 y78 ff2 fs0 fc0 sc0 ls0 ws0">(2<span class="ff3">n</span>)!</div><div class="t m0 x10d h3 y6c ff3 fs0 fc0 sc0 ls0 ws0">π</div><div class="t m0 x1b0 h5 y446 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">n</span></div><div class="t m0 x12a h4 y6c ff3 fs0 fc0 sc0 ls3 ws0">,n<span class="_ _a"></span><span class="ff4 ls0">∈<span class="_ _7"> </span><span class="ff9">N<span class="ff3">,</span></span></span></div><div class="t m0 x87 h3 y75 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xe1 h3 y368 ff2 fs0 fc0 sc0 ls0 ws0">sin<span class="_ _6"> </span><span class="ff3">x</span></div><div class="t m0 x6 h3 y303 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1a6 h5 y607 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y608 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y168 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x82 h4 y303 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff4"></span>1)</div><div class="t m0 x118 h5 y3bd ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 x10d h3 y75 ff2 fs0 fc0 sc0 ls0 ws0">(4</div><div class="t m0 x89 h5 y4b3 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x13d h4 y75 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff2">2)<span class="ff3">B</span></span></div><div class="t m0 x192 h5 y527 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x7 h3 y75 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xda h5 y4b3 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 x5 h3 y368 ff2 fs0 fc0 sc0 ls0 ws0">(2<span class="ff3">i</span>)!</div><div class="t m0 xdc h3 y303 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x3 h6 y1f9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x85 h4 y414 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4"></span></div><div class="t m0 x9a h4 y1f9 ff4 fs0 fc0 sc0 ls0 ws0">√</div><div class="t m0 x140 h4 y414 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span></span>4<span class="ff3">x</span></div><div class="t m0 x18d h3 y1b8 ff2 fs0 fc0 sc0 ls0 ws0">2<span class="ff3">x</span></div><div class="t m0 x107 h6 y1f9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x141 h5 yaa ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x6 h3 y609 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1a6 h5 yaa ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 ya9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y3c4 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x145 h4 y414 ff3 fs0 fc0 sc0 ls0 ws0">n<span class="ff2">(2</span>i<span class="_ _8"> </span><span class="ff2">+<span class="_ _8"> </span></span>n<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff2">1)!</span></span></div><div class="t m0 xfd h3 y1b8 ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!(</span>n<span class="_ _8"> </span><span class="ff2">+<span class="_ _8"> </span></span>i<span class="ff2">)!</span></div><div class="t m0 x11a h3 y60a ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xf6 h5 y26d ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xca h3 y609 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x8f h3 yae ff3 fs0 fc0 sc0 ls0 ws0">e</div><div class="t m0 x1ca h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x140 h3 yae ff2 fs0 fc0 sc0 ls0 ws0">sin<span class="_ _6"> </span><span class="ff3">x<span class="_ _33"> </span></span>=</div><div class="t m0 x1a6 h5 y60b ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y2cf ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y59e ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x145 h3 y60c ff2 fs0 fc0 sc0 ls0 ws0">2</div><div class="t m0 x14a h5 y28f ff6 fs1 fc0 sc0 ls0 ws0">i/<span class="ff5">2</span></div><div class="t m0 x118 h3 y60c ff2 fs0 fc0 sc0 ls0 ws0">sin</div><div class="t m0 x1aa h5 y60d ff6 fs1 fc0 sc0 ls0 ws0">iπ</div><div class="t m0 x14d h5 yaf ff5 fs1 fc0 sc0 ls0 ws0">4</div><div class="t m0 x118 h3 y60e ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!</span></div><div class="t m0 xd8 h3 yae ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xd9 h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x1b8 h3 yae ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x85 h6 y1ca ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1ab h4 y60f ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4"></span></div><div class="t m0 x87 h4 y96 ff4 fs0 fc0 sc0 ls0 ws0">√</div><div class="t m0 x88 h4 y60f ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff3">x</span></span></div><div class="t m0 x1b4 h3 y610 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x6 h3 y611 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1a6 h5 y1cb ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y1c9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y532 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x10d h3 y60f ff2 fs0 fc0 sc0 ls0 ws0">(4<span class="ff3">i</span>)!</div><div class="t m0 x145 h3 y612 ff2 fs0 fc0 sc0 ls0 ws0">16</div><div class="t m0 x1ae h5 yb3 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xd6 h4 y95 ff4 fs0 fc0 sc0 ls0 ws0">√</div><div class="t m0 x104 h3 y612 ff2 fs0 fc0 sc0 ls0 ws0">2(2<span class="ff3">i</span>)!(2<span class="ff3">i<span class="_ _8"> </span></span>+<span class="_ _8"> </span>1)!</div><div class="t m0 x136 h3 y611 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x179 h5 y613 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x150 h3 y611 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x84 h6 y17a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xc7 h3 y53e ff2 fs0 fc0 sc0 ls0 ws0">arcsin<span class="_ _6"> </span><span class="ff3">x</span></div><div class="t m0 xc6 h3 y614 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x106 h6 y17a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x130 h5 y615 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6 h3 y2d3 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x1a6 h5 y17b ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x10a h6 y294 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x10a h5 y5a5 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=0</span></div><div class="t m0 x97 h3 y53e ff2 fs0 fc0 sc0 ls0 ws0">4</div><div class="t m0 x14c h5 y616 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x10d h3 y53e ff3 fs0 fc0 sc0 ls0 ws0">i<span class="ff2">!</span></div><div class="t m0 x134 h5 y616 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x145 h3 y614 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">i<span class="_ _8"> </span></span>+<span class="_ _8"> </span>1)(2<span class="ff3">i<span class="_ _8"> </span></span>+<span class="_ _8"> </span>1)!</div><div class="t m0 xf7 h3 y2d3 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xca h5 y617 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">i</span></div><div class="t m0 xcb h3 y2d3 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 xef h3 y342 ff2 fs0 fc0 sc0 ls0 ws0">If <span class="ff3">G </span>is con<span class="_ _5"></span>tinuous in the in<span class="_ _5"></span>terv<span class="_ _5"></span>al [<span class="ff3">a,<span class="_ _6"> </span>b</span>] and <span class="ff3">F<span class="_ _1e"> </span></span>is nondecreasing then</div><div class="t m0 x13a h6 y458 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x31 h5 y4a9 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x10f h5 y618 ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x30 h3 y619 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 xef h4 y61a ff2 fs0 fc0 sc0 ls0 ws0">exists.<span class="_ _34"> </span>If <span class="ff3">a<span class="_ _7"> </span><span class="ff4">≤<span class="_ _7"> </span></span>b<span class="_ _7"> </span><span class="ff4">≤<span class="_ _7"> </span></span>c </span>then</div><div class="t m0 x178 h6 y603 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xab h5 y5ce ff6 fs1 fc0 sc0 ls0 ws0">c</div><div class="t m0 x5c h5 y15d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x170 h3 y69 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls1">)=</span></div><div class="t m0 x41 h6 y603 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x9f h5 y5ce ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x42 h5 y15d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x30 h3 y69 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls9">)+</span></div><div class="t m0 x1a h6 y603 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x63 h5 y5ce ff6 fs1 fc0 sc0 ls0 ws0">c</div><div class="t m0 x19 h5 y15d ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1c h3 y69 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)</span>.</div><div class="t m0 xef h3 y61b ff2 fs0 fc0 sc0 ls0 ws0">If the in<span class="_ _5"></span>tegrals inv<span class="_ _5"></span>olv<span class="_ _5"></span>ed exist</div><div class="t m0 x5a h6 y160 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x5b h5 y449 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x159 h5 y3bc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 xe h6 y61c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15b h3 y527 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2 ls9">)+</span>H<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 xcc h6 y61c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x6b h3 y527 ff3 fs0 fc0 sc0 ls0 ws0">dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls1">)=</span></div><div class="t m0 x17b h6 y160 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x186 h5 y449 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x163 h5 y3bc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x17d h3 y527 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls9">)+</span></div><div class="t m0 x64 h6 y160 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbc h5 y449 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1e h5 y3bc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x37 h3 y527 ff3 fs0 fc0 sc0 ls0 ws0">H<span class="_ _2"></span><span class="ff2">(<span class="_ _5"></span><span class="ff3">x<span class="ff2">)<span class="_ _8"> </span></span>dF<span class="_ _2"></span><span class="ff2">(</span>x<span class="ff2">)</span>,</span></span></div><div class="t m0 x5a h6 y16a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x5b h5 ya7 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x159 h5 y61d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 xe h3 ya9 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>d</div><div class="t m0 x10e h6 y61e ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x69 h3 ya9 ff3 fs0 fc0 sc0 ls0 ws0">F<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls2">)+</span>H<span class="_ _15"></span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 x122 h6 y61e ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x31 h3 ya9 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x17b h6 y16a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x186 h5 ya7 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x163 h5 y61d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x17d h3 ya9 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls9">)+</span></div><div class="t m0 x64 h6 y16a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbc h5 ya7 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1e h5 y61d ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x37 h3 ya9 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dH<span class="_ _2"></span><span class="ff2">(</span>x<span class="ff2">)</span>,</div><div class="t m0 x47 h6 y61f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x2a h5 y620 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x14e h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x126 h4 y416 ff3 fs0 fc0 sc0 ls0 ws0">c<span class="_ _8"> </span><span class="ff4">·<span class="_ _8"> </span></span>G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls1">)=</span></div><div class="t m0 x4a h6 y621 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x13a h5 y620 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 xce h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x1b7 h3 y416 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>d</div><div class="t m0 x112 h6 y3c4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x11d h4 y416 ff3 fs0 fc0 sc0 ls0 ws0">c<span class="_ _8"> </span><span class="ff4">·<span class="_ _8"> </span></span>F<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)</span></div><div class="t m0 x62 h6 y3c4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x36 h3 y416 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">c</span></div><div class="t m0 x1d h6 y621 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbc h5 y620 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x54 h5 y8e ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x168 h3 y416 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)</span>,</div><div class="t m0 x14e h6 y479 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x126 h5 y270 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x156 h5 y47b ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x9e h4 y622 ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 ls1">)=</span>G<span class="ff2">(</span>b<span class="ff2">)</span>F<span class="_ _6"> </span><span class="ff2">(</span>b<span class="ff2">)<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span></span></span>G<span class="ff2">(</span>a<span class="ff2">)</span>F<span class="_ _6"> </span><span class="ff2">(</span>a<span class="ff2">)<span class="_ _8"> </span><span class="ff4"></span></span></div><div class="t m0 xbb h6 y479 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x54 h5 y270 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1d h5 y47b ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 xbc h3 y622 ff3 fs0 fc0 sc0 ls0 ws0">F<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dG<span class="ff2">(</span>x<span class="ff2">)</span>.</div><div class="t m0 xef h3 y2d0 ff2 fs0 fc0 sc0 ls0 ws0">If<span class="_ _7"> </span>the<span class="_ _8"> </span>integrals<span class="_ _8"> </span>inv<span class="_ _5"></span>olv<span class="_ _5"></span>ed<span class="_ _7"> </span>exist,<span class="_ _7"> </span>and<span class="_ _8"> </span><span class="ff3">F<span class="_ _0"> </span></span>p<span class="_ _3"></span>ossesses<span class="_ _7"> </span>a<span class="_ _8"> </span>deriv<span class="_ _5"></span>ativ<span class="_ _5"></span>e<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 x167 h5 y623 ff8 fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 xba h3 y2d0 ff2 fs0 fc0 sc0 ls0 ws0">at<span class="_ _7"> </span>ev<span class="_ _5"></span>ery</div><div class="t m0 xef h3 y208 ff2 fs0 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>oin<span class="_ _5"></span>t in [<span class="ff3">a,<span class="_ _8"> </span>b<span class="_ _5"></span><span class="ff2">] then</span></span></div><div class="t m0 x10 h6 yb6 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x1b5 h5 ya0 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 xae h5 y3cc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x5d h3 y17f ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dF<span class="_ _6"> </span><span class="ff2">(</span>x<span class="ff2 lsf">)=</span></div><div class="t m0 x4d h6 yb6 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x13b h5 ya0 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x11d h5 y3cc ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x7b h3 y17f ff3 fs0 fc0 sc0 ls0 ws0">G<span class="ff2">(</span>x<span class="ff2">)</span>F</div><div class="t m0 x1b h5 y9e ff8 fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x19 h3 y17f ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">x</span>)<span class="_ _6"> </span><span class="ff3">dx.</span></div><div class="t m0 x116 h3 y297 ff2 fs0 fc0 sc0 ls0 ws0">Cramers Rule</div><div class="t m0 x72 h5 y299 ff5 fs1 fc0 sc0 ls0 ws0">00<span class="_ _11"> </span>47<span class="_ _11"> </span>18<span class="_ _1e"> </span>76<span class="_ _11"> </span>29<span class="_ _11"> </span>93<span class="_ _11"> </span>85<span class="_ _11"> </span>34<span class="_ _1e"> </span>61<span class="_ _11"> </span>52</div><div class="t m0 x72 h5 y2d8 ff5 fs1 fc0 sc0 ls0 ws0">86<span class="_ _11"> </span>11<span class="_ _11"> </span>57<span class="_ _1e"> </span>28<span class="_ _11"> </span>70<span class="_ _11"> </span>39<span class="_ _11"> </span>94<span class="_ _11"> </span>45<span class="_ _1e"> </span>02<span class="_ _11"> </span>63</div><div class="t m0 x72 h5 y213 ff5 fs1 fc0 sc0 ls0 ws0">95<span class="_ _11"> </span>80<span class="_ _11"> </span>22<span class="_ _1e"> </span>67<span class="_ _11"> </span>38<span class="_ _11"> </span>71<span class="_ _11"> </span>49<span class="_ _11"> </span>56<span class="_ _1e"> </span>13<span class="_ _11"> </span>04</div><div class="t m0 x72 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">59<span class="_ _11"> </span>96<span class="_ _11"> </span>81<span class="_ _1e"> </span>33<span class="_ _11"> </span>07<span class="_ _11"> </span>48<span class="_ _11"> </span>72<span class="_ _11"> </span>60<span class="_ _1e"> </span>24<span class="_ _11"> </span>15</div><div class="t m0 x72 h5 y18e ff5 fs1 fc0 sc0 ls0 ws0">73<span class="_ _11"> </span>69<span class="_ _11"> </span>90<span class="_ _1e"> </span>82<span class="_ _11"> </span>44<span class="_ _11"> </span>17<span class="_ _11"> </span>58<span class="_ _11"> </span>01<span class="_ _1e"> </span>35<span class="_ _11"> </span>26</div><div class="t m0 x72 h5 y2a3 ff5 fs1 fc0 sc0 ls0 ws0">68<span class="_ _11"> </span>74<span class="_ _11"> </span>09<span class="_ _1e"> </span>91<span class="_ _11"> </span>83<span class="_ _11"> </span>55<span class="_ _11"> </span>27<span class="_ _11"> </span>12<span class="_ _1e"> </span>46<span class="_ _11"> </span>30</div><div class="t m0 x72 h5 y2a9 ff5 fs1 fc0 sc0 ls0 ws0">37<span class="_ _11"> </span>08<span class="_ _11"> </span>75<span class="_ _1e"> </span>19<span class="_ _11"> </span>92<span class="_ _11"> </span>84<span class="_ _11"> </span>66<span class="_ _11"> </span>23<span class="_ _1e"> </span>50<span class="_ _11"> </span>41</div><div class="t m0 x72 h5 y489 ff5 fs1 fc0 sc0 ls0 ws0">14<span class="_ _11"> </span>25<span class="_ _11"> </span>36<span class="_ _1e"> </span>40<span class="_ _11"> </span>51<span class="_ _11"> </span>62<span class="_ _11"> </span>03<span class="_ _11"> </span>77<span class="_ _1e"> </span>88<span class="_ _11"> </span>99</div><div class="t m0 x72 h5 y624 ff5 fs1 fc0 sc0 ls0 ws0">21<span class="_ _11"> </span>32<span class="_ _11"> </span>43<span class="_ _1e"> </span>54<span class="_ _11"> </span>65<span class="_ _11"> </span>06<span class="_ _11"> </span>10<span class="_ _11"> </span>89<span class="_ _1e"> </span>97<span class="_ _11"> </span>78</div><div class="t m0 x72 h5 y3d6 ff5 fs1 fc0 sc0 ls0 ws0">42<span class="_ _11"> </span>53<span class="_ _11"> </span>64<span class="_ _1e"> </span>05<span class="_ _11"> </span>16<span class="_ _11"> </span>20<span class="_ _11"> </span>31<span class="_ _11"> </span>98<span class="_ _1e"> </span>79<span class="_ _11"> </span>87</div><div class="t m0 x35 h3 y297 ff2 fs0 fc0 sc0 ls0 ws0">Fib<span class="_ _3"></span>onacci Num<span class="_ _5"></span>b<span class="_ _3"></span>ers</div><div class="t m0 x81 h3 y2ea ff2 fs0 fc0 sc0 ls0 ws0">If w<span class="_ _5"></span>e hav<span class="_ _5"></span>e equations:</div><div class="t m0 xc8 h3 y1d8 ff3 fs0 fc0 sc0 ls0 ws0">a</div><div class="t m0 x12f h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff6">,</span>1</div><div class="t m0 x143 h3 y1d8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x107 h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x141 h3 y1d8 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x149 h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff6">,</span>2</div><div class="t m0 x13e h3 y1d8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x10a h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10b h4 y1d8 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4 ls4">···<span class="_ _15"></span></span>+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x129 h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff6">,n</span></div><div class="t m0 x89 h3 y1d8 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x12a h5 y188 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc3 h3 y1d8 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">b</span></div><div class="t m0 x171 h5 y188 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xc8 h3 y625 ff3 fs0 fc0 sc0 ls0 ws0">a</div><div class="t m0 x12f h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">,</span>1</div><div class="t m0 x143 h3 y625 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x107 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x141 h3 y625 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x149 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">,</span>2</div><div class="t m0 x13e h3 y625 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x10a h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10b h4 y625 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4 ls4">···<span class="_ _15"></span></span>+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x129 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">,n</span></div><div class="t m0 x89 h3 y625 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x12a h5 y18d ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc3 h3 y625 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">b</span></div><div class="t m0 x171 h5 y18d ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x143 h3 y316 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x143 h3 y1da ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x143 h3 y571 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x10a h3 y316 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x10a h3 y1da ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x10a h3 y571 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x4 h3 y316 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x4 h3 y1da ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x4 h3 y571 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 xc8 h3 y566 ff3 fs0 fc0 sc0 ls0 ws0">a</div><div class="t m0 xe2 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n,<span class="ff5">1</span></div><div class="t m0 x143 h3 y566 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x107 h5 y198 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x141 h3 y566 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x149 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n,<span class="ff5">2</span></div><div class="t m0 x8b h3 y566 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x102 h5 y198 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1ac h4 y566 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4 ls4">···<span class="_ _15"></span></span>+<span class="_ _8"> </span><span class="ff3">a</span></div><div class="t m0 x190 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n,n</div><div class="t m0 xd8 h3 y566 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xd9 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc9 h3 y566 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">b</span></div><div class="t m0 x1b3 h5 y198 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x81 h3 y4db ff2 fs0 fc0 sc0 ls0 ws0">Let<span class="_ _7"> </span><span class="ff3">A<span class="_ _7"> </span></span><span class="ls1">=(<span class="_ _b"></span><span class="ff3 ls0">a</span></span></div><div class="t m0 x93 h5 y199 ff6 fs1 fc0 sc0 ls0 ws0">i,j</div><div class="t m0 x143 h3 y4db ff2 fs0 fc0 sc0 ls0 ws0">)<span class="_ _7"> </span>and<span class="_ _7"> </span><span class="ff3">B<span class="_ _7"> </span></span>b<span class="_ _3"></span>e<span class="_ _7"> </span>the<span class="_ _7"> </span>column<span class="_ _8"> </span>matrix<span class="_ _7"> </span>(<span class="ff3">b</span></div><div class="t m0 xcb h5 y199 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x136 h3 y4db ff2 fs0 fc0 sc0 ls0 ws0">).<span class="_ _34"> </span>Then</div><div class="t m0 x81 h4 y218 ff2 fs0 fc0 sc0 ls0 ws0">there<span class="_ _0"> </span>is a<span class="_ _0"> </span>unique<span class="_ _0"> </span>solution<span class="_ _0"> </span>iff det<span class="_ _8"> </span><span class="ff3">A<span class="_ _7"> </span><span class="ff4"></span></span>= 0.<span class="_ _11"> </span>Let<span class="_ _0"> </span><span class="ff3">A</span></div><div class="t m0 x14f h5 y19a ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xdc h3 y218 ff2 fs0 fc0 sc0 ls10 ws0">be <span class="ff3 ls0">A</span></div><div class="t m0 x81 h3 y569 ff2 fs0 fc0 sc0 ls0 ws0">with column <span class="ff3">i </span>replaced by <span class="ff3">B<span class="_ _3"></span></span>.<span class="_ _34"> </span>Then</div><div class="t m0 xf4 h3 y626 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x8b h5 ye8 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x102 h3 y627 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 xf5 h3 y2e3 ff2 fs0 fc0 sc0 ls0 ws0">det<span class="_ _6"> </span><span class="ff3">A</span></div><div class="t m0 xd7 h5 yea ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x124 h3 y628 ff2 fs0 fc0 sc0 ls0 ws0">det<span class="_ _6"> </span><span class="ff3">A</span></div><div class="t m0 x125 h3 y629 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6d h3 y62a ff2 fs0 fc0 sc0 ls0 ws0">1<span class="ff3">,<span class="_ _6"> </span></span>1<span class="ff3">,<span class="_ _8"> </span></span>2<span class="_ _5"></span><span class="ff3">,<span class="_ _6"> </span><span class="ff2">3</span>,<span class="_ _8"> </span><span class="ff2">5<span class="_ _5"></span><span class="ff3">,<span class="_ _6"> </span><span class="ff2">8</span>,<span class="_ _8"> </span><span class="ff2">13<span class="_ _5"></span><span class="ff3">,<span class="_ _6"> </span><span class="ff2">21</span>,<span class="_ _8"> </span><span class="ff2">34<span class="_ _5"></span><span class="ff3">,<span class="_ _6"> </span><span class="ff2">55</span>,<span class="_ _6"> </span><span class="ff2">89</span><span class="ls4">,...</span></span></span></span></span></span></span></span></div><div class="t m0 x6d h3 y62b ff2 fs0 fc0 sc0 ls0 ws0">Definitions:</div><div class="t m0 x6d h3 y62c ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x13b h5 y62d ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x7b h3 y62e ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 x6e h5 y62d ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 x1cc h3 y62e ff2 fs0 fc0 sc0 ls0 ws0">+<span class="ff3">F</span></div><div class="t m0 xb1 h5 y62d ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8"><span class="ff5">2</span></span></div><div class="t m0 xd0 h3 y62e ff3 fs0 fc0 sc0 ls3 ws0">,F</div><div class="t m0 x7e h5 y62d ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 x23 h3 y62e ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 x183 h5 y62d ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x38 h3 y62e ff2 fs0 fc0 sc0 ls1 ws0">=1<span class="_ _b"></span><span class="ff3 ls0">,</span></div><div class="t m0 x4f h3 y62f ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x62 h5 y3d2 ff8 fs1 fc0 sc0 ls0 ws0"><span class="ff6">i</span></div><div class="t m0 x63 h4 y630 ff2 fs0 fc0 sc0 ls1 ws0">=(<span class="_ _b"></span><span class="ff4 ls0"><span class="ff2">1)</span></span></div><div class="t m0 x1f h5 y631 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 x7e h3 y630 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x23 h5 y3d2 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x7d h3 y630 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x18 h3 y37d ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x6e h5 y195 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xb8 h3 y37d ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x52 h5 y5e1 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x63 h5 y31b ff8 fs1 fc0 sc0 ls0 ws0">√</div><div class="t m0 x1c h5 y632 ff5 fs1 fc0 sc0 ls0 ws0">5</div><div class="t m0 x1a8 h6 yd3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x166 h3 y37d ff3 fs0 fc0 sc0 ls0 ws0">φ</div><div class="t m0 x168 h5 yd1 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xdf h4 y37d ff4 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbd h3 y565 ff2 fs0 fc0 sc0 ls0 ws0">ˆ</div><div class="t m0 x65 h3 y37d ff3 fs0 fc0 sc0 ls0 ws0">φ</div><div class="t m0 x66 h5 yd1 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x23 h6 yd3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xbf h3 y37d ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x6d h3 y21a ff2 fs0 fc0 sc0 ls0 ws0">Cassinis iden<span class="_ _5"></span>tity:<span class="_ _34"> </span>for <span class="ff3 ls1">i&gt;</span>0:</div><div class="t m0 x7a h3 y633 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x169 h5 y1e3 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">+1</span></div><div class="t m0 x62 h3 y634 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x1b h5 y1e3 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 xb1 h4 y634 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x168 h5 y3d6 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa3 h5 y2ae ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x7c h4 y634 ff2 fs0 fc0 sc0 ls1 ws0">=(<span class="_ _b"></span><span class="ff4 ls0"><span class="ff2">1)</span></span></div><div class="t m0 xd2 h5 y3d6 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xc0 h3 y634 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6d h3 yea ff2 fs0 fc0 sc0 ls0 ws0">Additiv<span class="_ _5"></span>e rule:</div><div class="t m0 xb6 h3 y2bb ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x7a h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+</span>k</div><div class="t m0 x113 h3 y2bb ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 xde h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x1c h3 y2bb ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 xb9 h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+1</span></div><div class="t m0 xdf h3 y2bb ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x66 h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">k<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 xba h3 y2bb ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 xc0 h5 y635 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x38 h3 y2bb ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x4e h3 y636 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x187 h5 y22a ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff6">n</span></div><div class="t m0 x6e h3 y637 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">F</span></div><div class="t m0 x51 h5 y22a ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x52 h3 y637 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x1b2 h5 y22a ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+1</span></div><div class="t m0 x37 h3 y637 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x7e h5 y22a ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 x1a7 h3 y637 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x165 h5 y22a ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x22 h3 y637 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6d h3 y638 ff2 fs0 fc0 sc0 ls0 ws0">Calculation by matrices:</div><div class="t m0 x6d h6 y19f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xfb h3 y639 ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 xa1 h5 y63a ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8"><span class="ff5">2</span></span></div><div class="t m0 x17a h3 y63b ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x63 h5 y63a ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 xfb h3 y63c ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 xa1 h5 y63d ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 x51 h3 y63c ff3 fs0 fc0 sc0 ls0 ws0">F</div><div class="t m0 x180 h5 y63d ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xcf h6 y19f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x37 h3 y63e ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x55 h6 y19f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x66 h3 y63b ff2 fs0 fc0 sc0 ls5 ws0">01</div><div class="t m0 x66 h3 y63c ff2 fs0 fc0 sc0 ls5 ws0">11</div><div class="t m0 xc0 h6 y19f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x19b h5 y108 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x39 h3 y63f ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x18a h3 y1e4 ff2 fs0 fc0 sc0 ls0 ws0">The<span class="_ _7"> </span>Fib<span class="_ _3"></span>onacci<span class="_ _7"> </span>num<span class="_ _5"></span>ber<span class="_ _7"> </span>system:</div><div class="t m0 x18a h3 y640 ff2 fs0 fc0 sc0 ls0 ws0">Ev<span class="_ _5"></span>ery<span class="_ _1e"> </span>in<span class="_ _5"></span>teger<span class="_ _1e"> </span><span class="ff3">n<span class="_ _1e"> </span></span>has<span class="_ _1e"> </span>a<span class="_ _1e"> </span>unique</div><div class="t m0 x18a h3 y641 ff2 fs0 fc0 sc0 ls0 ws0">represen<span class="_ _5"></span>tation</div><div class="t m0 x29 h3 y4e9 ff3 fs0 fc0 sc0 ls0 ws0">n<span class="_ _7"> </span><span class="ff2">=<span class="_ _7"> </span></span>F</div><div class="t m0 xff h5 y642 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x15b h7 y643 ffc fs2 fc0 sc0 ls0 ws0">1</div><div class="t m0 x5c h3 y4e9 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x10e h5 y642 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x69 h7 y643 ffc fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3d h4 y4e9 ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4 ls4">···<span class="_ _15"></span></span>+<span class="_ _8"> </span><span class="ff3">F</span></div><div class="t m0 x40 h5 y642 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x1cd h7 y643 ffa fs2 fc0 sc0 ls0 ws0">m</div><div class="t m0 x42 h3 y4e9 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x18a h3 y10c ff2 fs0 fc0 sc0 ls0 ws0">where<span class="_ _34"> </span><span class="ff3">k</span></div><div class="t m0 x126 h5 y644 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x15f h4 y10c ff4 fs0 fc0 sc0 ls0 ws0">≥<span class="_ _34"> </span><span class="ff3">k</span></div><div class="t m0 x10e h5 y644 ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">+1</span></div><div class="t m0 x138 h3 y10c ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _7"> </span>2<span class="_ _34"> </span>for<span class="_ _1e"> </span>all<span class="_ _0"> </span><span class="ff3">i</span>,</div><div class="t m0 x18a h4 y4f4 ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _7"> </span><span class="ff4">≤<span class="_ _7"> </span><span class="ff3 ls1">i&lt;m<span class="_ _15"></span></span></span>and <span class="ff3">k</span></div><div class="t m0 x3d h5 y1eb ff6 fs1 fc0 sc0 ls0 ws0">m</div><div class="t m0 x2e h4 y4f4 ff4 fs0 fc0 sc0 ls0 ws0">≥<span class="_ _7"> </span><span class="ff2">2.</span></div><div class="t m0 x81 h3 y645 ff2 fs0 fc0 sc0 ls0 ws0">Impro<span class="_ _5"></span>vemen<span class="_ _5"></span>t<span class="_ _12"> </span>mak<span class="_ _5"></span>es<span class="_ _12"> </span>strait<span class="_ _12"> </span>roads,<span class="_ _36"> </span>but<span class="_ _12"> </span>the<span class="_ _12"> </span>crooked</div><div class="t m0 x81 h3 y3e1 ff2 fs0 fc0 sc0 ls0 ws0">roads without Improv<span class="_ _5"></span>emen<span class="_ _5"></span>t, are roads of Genius.</div><div class="t m0 x81 h3 y2bd ff2 fs0 fc0 sc0 ls0 ws0"> William Blake (The Marriage of Hea<span class="_ _5"></span>v<span class="_ _5"></span>en and Hell)</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div></div>