1
0
mirror of https://github.com/pdf2htmlEX/pdf2htmlEX.git synced 2024-12-22 04:50:09 +00:00
pdf2htmlEX/demo/demo11.page
2013-09-28 13:30:57 +08:00

2 lines
92 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<div class="pd w0 h0"><div id="pfb" class="pf" data-page-no="b"><div class="pc pcb"><img class="bi x2f y263 w4 h20" alt="" src=""/><div class="c xb7 y264 w23 h21"><div class="t m0 xb8 h5 y265 ff17 fs10 fc0 sc0 ls0 ws0">!&quot;</div><div class="t m0 xb8 h5 y266 ff17 fs10 fc0 sc0 ls0 ws0">#&quot;</div><div class="t m0 x6a h5 y52 ff17 fs10 fc0 sc0 ls0 ws0">$!&quot;</div><div class="t m0 x6a h5 y1b0 ff17 fs10 fc0 sc0 ls0 ws0">$#&quot;</div><div class="t m0 x6a h5 y175 ff17 fs10 fc0 sc0 ls0 ws0">%!&quot;</div><div class="t m0 x6a h5 y267 ff17 fs10 fc0 sc0 ls0 ws0">%#&quot;</div></div><div class="c xb y268 w24 h22"><div class="t m0 x6a h5 y269 ff17 fs10 fc0 sc0 ls0 ws0">&amp;<span class="_ _2"></span>&apos;<span class="_ _2"></span>()*+,&quot;</div></div><div class="c xb y63 w25 h22"><div class="t m0 x6a h5 y269 ff17 fs10 fc0 sc0 ls0 ws0">-./&quot;</div></div><div class="c xb y259 w26 h22"><div class="t m0 x6a h5 y269 ff17 fs10 fc0 sc0 ls0 ws0">01&quot;</div></div><div class="t m0 x2f h5 y161 ff1 fs3 fc0 sc0 ls0 ws0">Figure<span class="_ _3"> </span>10.<span class="_ _1"> </span><span class="ff2">Speedup<span class="_ _3"> </span>vs.<span class="_ _3"> </span>a<span class="_ _3"> </span>baseline<span class="_ _3"> </span>Jav<span class="_ _2"></span>aScript<span class="_ _3"> </span>interpreter<span class="_ _3"> </span>(SpiderMonkey)<span class="_ _3"> </span>for<span class="_ _3"> </span>our<span class="_ _3"> </span>trace-based<span class="_ _3"> </span>JIT<span class="_ _3"> </span>compiler<span class="_ _2"></span>,<span class="_ _3"> </span>Apple<span class="_ _2"></span>s<span class="_ _3"> </span>SquirrelFish<span class="_ _3"> </span>Extreme</span></div><div class="t m0 x2f h5 y162 ff2 fs3 fc0 sc0 ls0 ws0">inline<span class="_ _5"> </span>threading<span class="_ _7"> </span>interpreter<span class="_ _5"> </span>and<span class="_ _7"> </span>Google<span class="_ _2"></span>s<span class="_ _7"> </span>V8<span class="_ _5"> </span>JS<span class="_ _7"> </span>compiler<span class="_ _2"></span>.<span class="_ _5"> </span>Our<span class="_ _7"> </span>system<span class="_ _5"> </span>generates<span class="_ _7"> </span>particularly<span class="_ _5"> </span>ef<span class="_ _2"></span>ficient<span class="_ _7"> </span>code<span class="_ _5"> </span>for<span class="_ _7"> </span>programs<span class="_ _5"> </span>that<span class="_ _7"> </span>benefit<span class="_ _5"> </span>most<span class="_ _7"> </span>from</div><div class="t m0 x2f h5 y163 ff2 fs3 fc0 sc0 ls0 ws0">type<span class="_ _3"> </span>specialization,<span class="_ _5"> </span>which<span class="_ _5"> </span>includes<span class="_ _3"> </span>SunSpider<span class="_ _5"> </span>Benchmark<span class="_ _3"> </span>programs<span class="_ _5"> </span>that<span class="_ _3"> </span>perform<span class="_ _5"> </span>bit<span class="_ _3"> </span>manipulation.<span class="_ _5"> </span>W<span class="_ _b"></span>e<span class="_ _3"> </span>type-specialize<span class="_ _5"> </span>the<span class="_ _3"> </span>code<span class="_ _5"> </span>in<span class="_ _3"> </span>question</div><div class="t m0 x2f h5 y164 ff2 fs3 fc0 sc0 ls0 ws0">to<span class="_ _3"> </span>use<span class="_ _3"> </span>integer<span class="_ _3"> </span>arithmetic,<span class="_ _3"> </span>which<span class="_ _3"> </span>substantially<span class="_ _6"> </span>impro<span class="_ _2"></span>ves<span class="_ _3"> </span>performance.<span class="_ _3"> </span>For<span class="_ _3"> </span>one<span class="_ _3"> </span>of<span class="_ _3"> </span>the<span class="_ _3"> </span>benchmark<span class="_ _3"> </span>programs<span class="_ _3"> </span>we<span class="_ _6"> </span>e<span class="_ _2"></span>xecute<span class="_ _3"> </span>25<span class="_ _3"> </span>times<span class="_ _3"> </span>faster<span class="_ _3"> </span>than</div><div class="t m0 x2f h5 y165 ff2 fs3 fc0 sc0 ls0 ws0">the<span class="_ _5"> </span>SpiderMonkey<span class="_ _5"> </span>interpreter<span class="_ _2"></span>,<span class="_ _5"> </span>and<span class="_ _5"> </span>almost<span class="_ _5"> </span>5<span class="_ _5"> </span>times<span class="_ _3"> </span>f<span class="_ _2"></span>aster<span class="_ _5"> </span>than<span class="_ _5"> </span>V8<span class="_ _5"> </span>and<span class="_ _3"> </span>SFX.<span class="_ _5"> </span>F<span class="_ _2"></span>or<span class="_ _5"> </span>a<span class="_ _5"> </span>large<span class="_ _5"> </span>number<span class="_ _5"> </span>of<span class="_ _5"> </span>benchmarks<span class="_ _3"> </span>all<span class="_ _5"> </span>three<span class="_ _5"> </span>VMs<span class="_ _5"> </span>produce<span class="_ _5"> </span>similar</div><div class="t m0 x2f h5 y166 ff2 fs3 fc0 sc0 ls0 ws0">results.<span class="_ _5"> </span>W<span class="_ _b"></span>e<span class="_ _3"> </span>perform<span class="_ _5"> </span>w<span class="_ _2"></span>orst<span class="_ _5"> </span>on<span class="_ _5"> </span>benchmark<span class="_ _3"> </span>programs<span class="_ _5"> </span>that<span class="_ _5"> </span>we<span class="_ _5"> </span>do<span class="_ _5"> </span>not<span class="_ _5"> </span>trace<span class="_ _5"> </span>and<span class="_ _5"> </span>instead<span class="_ _3"> </span>f<span class="_ _2"></span>all<span class="_ _5"> </span>back<span class="_ _5"> </span>onto<span class="_ _5"> </span>the<span class="_ _3"> </span>interpreter<span class="_ _b"></span>.<span class="_ _5"> </span>This<span class="_ _5"> </span>includes<span class="_ _3"> </span>the<span class="_ _5"> </span>recursi<span class="_ _2"></span>v<span class="_ _2"></span>e</div><div class="t m0 x2f h5 y167 ff2 fs3 fc0 sc0 ls0 ws0">benchmarks<span class="_ _5"> </span><span class="ff7">access-binary-trees<span class="_ _5"> </span></span>and<span class="_ _3"> </span><span class="ff7">control-flow-recursive<span class="_ _2"></span><span class="ff2">,<span class="_ _5"> </span>for<span class="_ _5"> </span>which<span class="_ _5"> </span>we<span class="_ _3"> </span>currently<span class="_ _5"> </span>don<span class="_ _2"></span>t<span class="_ _5"> </span>generate<span class="_ _5"> </span>any<span class="_ _5"> </span>nativ<span class="_ _2"></span>e<span class="_ _5"> </span>code.</span></span></div><div class="t m0 x2f h5 y16a ff2 fs3 fc0 sc0 ls0 ws0">In<span class="_ _3"> </span>particular<span class="_ _2"></span>,<span class="_ _5"> </span>the<span class="_ _3"> </span><span class="ff7">bitops<span class="_ _5"> </span></span>benchmarks<span class="_ _3"> </span>are<span class="_ _5"> </span>short<span class="_ _3"> </span>programs<span class="_ _3"> </span>that<span class="_ _5"> </span>per-</div><div class="t m0 x2f h5 y16b ff2 fs3 fc0 sc0 ls0 ws0">form<span class="_ _3"> </span>many<span class="_ _3"> </span>bitwise<span class="_ _3"> </span>operations,<span class="_ _5"> </span>so<span class="_ _3"> </span>TraceMonke<span class="_ _2"></span>y<span class="_ _3"> </span>can<span class="_ _3"> </span>co<span class="_ _2"></span>ver<span class="_ _3"> </span>the<span class="_ _3"> </span>en-</div><div class="t m0 x2f h5 y16c ff2 fs3 fc0 sc0 ls0 ws0">tire<span class="_ _5"> </span>program<span class="_ _5"> </span>with<span class="_ _5"> </span>1<span class="_ _5"> </span>or<span class="_ _5"> </span>2<span class="_ _3"> </span>traces<span class="_ _5"> </span>that<span class="_ _5"> </span>operate<span class="_ _5"> </span>on<span class="_ _5"> </span>inte<span class="_ _2"></span>gers.<span class="_ _5"> </span>T<span class="_ _2"></span>raceMon-</div><div class="t m0 x2f h5 y16d ff2 fs3 fc0 sc0 ls0 ws0">key<span class="_ _5"> </span>runs<span class="_ _5"> </span>all<span class="_ _3"> </span>the<span class="_ _5"> </span>other<span class="_ _3"> </span>progr<span class="_ _2"></span>ams<span class="_ _5"> </span>in<span class="_ _3"> </span>this<span class="_ _5"> </span>set<span class="_ _3"> </span>almost<span class="_ _5"> </span>entirely<span class="_ _5"> </span>as<span class="_ _3"> </span>nati<span class="_ _2"></span>v<span class="_ _2"></span>e</div><div class="t m0 x2f h5 y16e ff2 fs3 fc0 sc0 ls0 ws0">code.</div><div class="t m0 x34 h5 yd4 ff7 fs3 fc0 sc0 ls0 ws0">regexp-dna<span class="_ _1"> </span><span class="ff2">is<span class="_ _e"> </span>dominated<span class="_ _1"> </span>by<span class="_ _e"> </span>regular<span class="_ _1"> </span>expression<span class="_ _1"> </span>matching,</span></div><div class="t m0 x2f h5 yf4 ff2 fs3 fc0 sc0 ls0 ws0">which<span class="_ _5"> </span>is<span class="_ _5"> </span>implemented<span class="_ _3"> </span>in<span class="_ _5"> </span>all<span class="_ _5"> </span>3<span class="_ _5"> </span>VMs<span class="_ _5"> </span>by<span class="_ _5"> </span>a<span class="_ _3"> </span>special<span class="_ _5"> </span>re<span class="_ _2"></span>gular<span class="_ _5"> </span>expression</div><div class="t m0 x2f h5 yf5 ff2 fs3 fc0 sc0 ls0 ws0">compiler<span class="_ _2"></span>.<span class="_ _3"> </span>Thus,<span class="_ _3"> </span>performance<span class="_ _3"> </span>on<span class="_ _3"> </span>this<span class="_ _3"> </span>benchmark<span class="_ _3"> </span>has<span class="_ _3"> </span>little<span class="_ _6"> </span>relation</div><div class="t m0 x2f h5 yf6 ff2 fs3 fc0 sc0 ls0 ws0">to<span class="_ _5"> </span>the<span class="_ _5"> </span>trace<span class="_ _3"> </span>compilation<span class="_ _5"> </span>approach<span class="_ _5"> </span>discussed<span class="_ _5"> </span>in<span class="_ _5"> </span>this<span class="_ _5"> </span>paper<span class="_ _2"></span>.</div><div class="t m0 x34 h5 yf7 ff2 fs3 fc0 sc0 ls0 ws0">T<span class="_ _2"></span>raceMonke<span class="_ _2"></span>y<span class="_ _2"></span>s<span class="_ _5"> </span>smaller<span class="_ _3"> </span>speedups<span class="_ _3"> </span>on<span class="_ _3"> </span>the<span class="_ _5"> </span>other<span class="_ _3"> </span>benchmarks<span class="_ _3"> </span>can</div><div class="t m0 x2f h5 y26a ff2 fs3 fc0 sc0 ls0 ws0">be<span class="_ _5"> </span>attributed<span class="_ _5"> </span>to<span class="_ _5"> </span>a<span class="_ _5"> </span>few<span class="_ _5"> </span>specific<span class="_ _5"> </span>causes:</div><div class="t m0 x36 h4 y26b ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 x37 h5 y26c ff2 fs3 fc0 sc0 ls0 ws0">The<span class="_ _e"> </span>implementation<span class="_ _e"> </span>does<span class="_ _e"> </span>not<span class="_ _e"> </span>currently<span class="_ _e"> </span>trace<span class="_ _e"> </span>recursion,<span class="_ _e"> </span>so</div><div class="t m0 x37 h5 y26d ff2 fs3 fc0 sc0 ls0 ws0">T<span class="_ _2"></span>raceMonke<span class="_ _2"></span>y<span class="_ _e"> </span>achie<span class="_ _2"></span>ves<span class="_ _1"> </span>a<span class="_ _e"> </span>small<span class="_ _1"> </span>speedup<span class="_ _e"> </span>or<span class="_ _e"> </span>no<span class="_ _e"> </span>speedup<span class="_ _1"> </span>on</div><div class="t m0 x37 h5 y26e ff2 fs3 fc0 sc0 ls0 ws0">benchmarks<span class="_ _1b"> </span>that<span class="_ _1b"> </span>use<span class="_ _e"> </span>recursion<span class="_ _1b"> </span>extensi<span class="_ _2"></span>vely:<span class="_ _1b"> </span><span class="ff7">3d-cube</span>,<span class="_ _e"> </span><span class="ff7">3d-</span></div><div class="t m0 x37 h5 y26f ff7 fs3 fc0 sc0 ls0 ws0">raytrace<span class="ff2">,<span class="_ _3"> </span></span>access-binary-trees<span class="ff2">,<span class="_ _6"> </span></span>string-tagcloud<span class="ff2">,<span class="_ _3"> </span>and</span></div><div class="t m0 x37 h5 y270 ff7 fs3 fc0 sc0 ls0 ws0">controlflow-recursive<span class="ff2">.</span></div><div class="t m0 x36 h4 y271 ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 x37 h5 yfe ff2 fs3 fc0 sc0 ls0 ws0">The<span class="_ _8"> </span>implementation<span class="_ _6"> </span>does<span class="_ _8"> </span>not<span class="_ _8"> </span>currently<span class="_ _8"> </span>trace<span class="_ _8"> </span><span class="ff7">eval<span class="_ _8"> </span></span>and<span class="_ _8"> </span>some</div><div class="t m0 x37 h5 yff ff2 fs3 fc0 sc0 ls0 ws0">other<span class="_ _1"> </span>functions<span class="_ _1"> </span>implemented<span class="_ _d"> </span>in<span class="_ _1"> </span>C.<span class="_ _1"> </span>Because<span class="_ _d"> </span><span class="ff7">date-format-</span></div><div class="t m0 x37 h5 y100 ff7 fs3 fc0 sc0 ls0 ws0">tofte<span class="_ _8"> </span><span class="ff2">and<span class="_ _8"> </span></span>date-format-xparb<span class="_ _8"> </span><span class="ff2">use<span class="_ _8"> </span>such<span class="_ _8"> </span>functions<span class="_ _8"> </span>in<span class="_ _8"> </span>their</span></div><div class="t m0 x37 h5 y101 ff2 fs3 fc0 sc0 ls0 ws0">main<span class="_ _5"> </span>loops,<span class="_ _5"> </span>we<span class="_ _3"> </span>do<span class="_ _5"> </span>not<span class="_ _5"> </span>trace<span class="_ _5"> </span>them.</div><div class="t m0 x36 h4 y272 ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 x37 h5 y98 ff2 fs3 fc0 sc0 ls0 ws0">The<span class="_ _8"> </span>implementation<span class="_ _8"> </span>does<span class="_ _d"> </span>not<span class="_ _8"> </span>currently<span class="_ _8"> </span>trace<span class="_ _8"> </span>through<span class="_ _d"> </span>re<span class="_ _2"></span>gular</div><div class="t m0 x37 h5 y99 ff2 fs3 fc0 sc0 ls0 ws0">expression<span class="_ _6"> </span><span class="ff7">replace<span class="_ _d"> </span></span>operations.<span class="_ _6"> </span>The<span class="_ _d"> </span>replace<span class="_ _6"> </span>function<span class="_ _d"> </span>can<span class="_ _6"> </span>be</div><div class="t m0 x37 h5 y9a ff2 fs3 fc0 sc0 ls0 ws0">passed<span class="_ _3"> </span>a<span class="_ _5"> </span>function<span class="_ _5"> </span>object<span class="_ _3"> </span>used<span class="_ _5"> </span>to<span class="_ _3"> </span>compute<span class="_ _5"> </span>the<span class="_ _3"> </span>replacement<span class="_ _5"> </span>text.</div><div class="t m0 x37 h5 y9b ff2 fs3 fc0 sc0 ls0 ws0">Our<span class="_ _6"> </span>implementation<span class="_ _8"> </span>currently<span class="_ _6"> </span>does<span class="_ _8"> </span>not<span class="_ _8"> </span>trace<span class="_ _6"> </span>functions<span class="_ _8"> </span>called</div><div class="t m0 x37 h5 y9c ff2 fs3 fc0 sc0 ls0 ws0">as<span class="_ _5"> </span>replace<span class="_ _5"> </span>functions.<span class="_ _5"> </span>The<span class="_ _5"> </span>run<span class="_ _5"> </span>time<span class="_ _5"> </span>of<span class="_ _5"> </span><span class="ff7">string-unpack-code<span class="_ _5"> </span></span>is</div><div class="t m0 x37 h5 y9d ff2 fs3 fc0 sc0 ls0 ws0">dominated<span class="_ _5"> </span>by<span class="_ _5"> </span>such<span class="_ _3"> </span>a<span class="_ _5"> </span><span class="ff7">replace<span class="_ _5"> </span></span>call.</div><div class="t m0 x8 h4 y273 ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 xb2 h5 y16a ff2 fs3 fc0 sc0 ls0 ws0">T<span class="_ _b"></span>wo<span class="_ _8"> </span>programs<span class="_ _d"> </span>trace<span class="_ _8"> </span>well,<span class="_ _d"> </span>b<span class="_ _2"></span>ut<span class="_ _8"> </span>have<span class="_ _6"> </span>a<span class="_ _d"> </span>long<span class="_ _8"> </span>compilation<span class="_ _d"> </span>time.</div><div class="t m0 xb2 h5 y16b ff7 fs3 fc0 sc0 ls0 ws0">access-nbody<span class="_ _7"> </span><span class="ff2">forms<span class="_ _5"> </span>a<span class="_ _7"> </span>large<span class="_ _7"> </span>number<span class="_ _7"> </span>of<span class="_ _5"> </span>traces<span class="_ _7"> </span>(81).<span class="_ _7"> </span></span>crypto-md5</div><div class="t m0 xb2 h5 y16c ff2 fs3 fc0 sc0 ls0 ws0">forms<span class="_ _3"> </span>one<span class="_ _3"> </span>v<span class="_ _2"></span>ery<span class="_ _3"> </span>long<span class="_ _3"> </span>trace.<span class="_ _3"> </span>W<span class="_ _b"></span>e<span class="_ _3"> </span>e<span class="_ _2"></span>xpect<span class="_ _3"> </span>to<span class="_ _3"> </span>impro<span class="_ _2"></span>ve<span class="_ _3"> </span>performance</div><div class="t m0 xb2 h5 y16d ff2 fs3 fc0 sc0 ls0 ws0">on<span class="_ _3"> </span>this<span class="_ _5"> </span>programs<span class="_ _3"> </span>by<span class="_ _5"> </span>improving<span class="_ _5"> </span>the<span class="_ _3"> </span>compilation<span class="_ _5"> </span>speed<span class="_ _3"> </span>of<span class="_ _5"> </span>nano-</div><div class="t m0 xb2 h5 y16e ff2 fs3 fc0 sc0 ls0 ws0">jit.</div><div class="t m0 x8 h4 y23 ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 xb2 h5 y274 ff2 fs3 fc0 sc0 ls0 ws0">Some<span class="_ _d"> </span>programs<span class="_ _d"> </span>trace<span class="_ _1"> </span>v<span class="_ _2"></span>ery<span class="_ _d"> </span>well,<span class="_ _d"> </span>and<span class="_ _1"> </span>speed<span class="_ _d"> </span>up<span class="_ _d"> </span>compared<span class="_ _d"> </span>to</div><div class="t m0 xb2 h5 y170 ff2 fs3 fc0 sc0 ls0 ws0">the<span class="_ _6"> </span>interpreter<span class="_ _2"></span>,<span class="_ _6"> </span>but<span class="_ _6"> </span>are<span class="_ _6"> </span>not<span class="_ _6"> </span>as<span class="_ _6"> </span>fast<span class="_ _6"> </span>as<span class="_ _6"> </span>SFX<span class="_ _6"> </span>and/or<span class="_ _8"> </span>V8,<span class="_ _6"> </span>namely</div><div class="t m0 xb2 h5 y275 ff7 fs3 fc0 sc0 ls0 ws0">bitops-bits-in-byte<span class="ff2">,<span class="_ _c"> </span></span>bitops-nsieve-bits<span class="ff2">,<span class="_ _29"> </span></span>access-</div><div class="t m0 xb2 h5 y276 ff7 fs3 fc0 sc0 ls0 ws0">fannkuch<span class="ff2">,<span class="_ _3"> </span></span>access-nsieve<span class="ff2">,<span class="_ _6"> </span>and<span class="_ _3"> </span></span>crypto-aes<span class="ff2">.<span class="_ _3"> </span>The<span class="_ _3"> </span>reason<span class="_ _6"> </span>is</span></div><div class="t m0 xb2 h5 y277 ff2 fs3 fc0 sc0 ls0 ws0">not<span class="_ _d"> </span>clear,<span class="_ _d"> </span>b<span class="_ _2"></span>ut<span class="_ _d"> </span>all<span class="_ _1"> </span>of<span class="_ _d"> </span>these<span class="_ _d"> </span>programs<span class="_ _d"> </span>have<span class="_ _d"> </span>nested<span class="_ _d"> </span>loops<span class="_ _d"> </span>with</div><div class="t m0 xb2 h5 y278 ff2 fs3 fc0 sc0 ls0 ws0">small<span class="_ _5"> </span>bodies,<span class="_ _3"> </span>so<span class="_ _5"> </span>we<span class="_ _5"> </span>suspect<span class="_ _5"> </span>that<span class="_ _3"> </span>the<span class="_ _5"> </span>implementation<span class="_ _5"> </span>has<span class="_ _3"> </span>a<span class="_ _5"> </span>rela-</div><div class="t m0 xb2 h5 y279 ff2 fs3 fc0 sc0 ls0 ws0">tiv<span class="_ _2"></span>ely<span class="_ _5"> </span>high<span class="_ _5"> </span>cost<span class="_ _5"> </span>for<span class="_ _5"> </span>calling<span class="_ _5"> </span>nested<span class="_ _5"> </span>traces.<span class="_ _5"> </span><span class="ff7">string-fasta<span class="_ _5"> </span></span>traces</div><div class="t m0 xb2 h5 y27a ff2 fs3 fc0 sc0 ls0 ws0">well,<span class="_ _5"> </span>b<span class="_ _2"></span>ut<span class="_ _5"> </span>its<span class="_ _5"> </span>run<span class="_ _7"> </span>time<span class="_ _5"> </span>is<span class="_ _5"> </span>dominated<span class="_ _5"> </span>by<span class="_ _5"> </span>string<span class="_ _5"> </span>processing<span class="_ _7"> </span>builtins,</div><div class="t m0 xb2 h5 y27b ff2 fs3 fc0 sc0 ls0 ws0">which<span class="_ _5"> </span>are<span class="_ _3"> </span>unaf<span class="_ _2"></span>fected<span class="_ _5"> </span>by<span class="_ _5"> </span>tracing<span class="_ _5"> </span>and<span class="_ _3"> </span>seem<span class="_ _5"> </span>to<span class="_ _5"> </span>be<span class="_ _3"> </span>less<span class="_ _5"> </span>ef<span class="_ _2"></span>ficient<span class="_ _5"> </span>in</div><div class="t m0 xb2 h5 y27c ff2 fs3 fc0 sc0 ls0 ws0">SpiderMonkey<span class="_ _5"> </span>than<span class="_ _5"> </span>in<span class="_ _5"> </span>the<span class="_ _5"> </span>two<span class="_ _5"> </span>other<span class="_ _5"> </span>VMs.</div><div class="t m0 x33 h5 yd2 ff1 fs3 fc0 sc0 ls0 ws0">Detailed<span class="_ _5"> </span>perf<span class="_ _2"></span>ormance<span class="_ _5"> </span>metrics.<span class="_ _5"> </span><span class="ff2">In<span class="_ _5"> </span>Figure<span class="_ _5"> </span>11<span class="_ _7"> </span>we<span class="_ _5"> </span>show<span class="_ _5"> </span>the<span class="_ _5"> </span>frac-</span></div><div class="t m0 x32 h5 y205 ff2 fs3 fc0 sc0 ls0 ws0">tion<span class="_ _5"> </span>of<span class="_ _3"> </span>instructions<span class="_ _5"> </span>interpreted<span class="_ _5"> </span>and<span class="_ _5"> </span>the<span class="_ _3"> </span>fraction<span class="_ _5"> </span>of<span class="_ _5"> </span>instructions<span class="_ _5"> </span>exe-</div><div class="t m0 x32 h5 y94 ff2 fs3 fc0 sc0 ls0 ws0">cuted<span class="_ _5"> </span>as<span class="_ _5"> </span>nati<span class="_ _2"></span>v<span class="_ _2"></span>e<span class="_ _5"> </span>code.<span class="_ _5"> </span>This<span class="_ _7"> </span>figure<span class="_ _5"> </span>shows<span class="_ _5"> </span>that<span class="_ _7"> </span>for<span class="_ _5"> </span>many<span class="_ _5"> </span>programs,<span class="_ _5"> </span>we</div><div class="t m0 x32 h5 y95 ff2 fs3 fc0 sc0 ls0 ws0">are<span class="_ _5"> </span>able<span class="_ _5"> </span>to<span class="_ _3"> </span>e<span class="_ _2"></span>x<span class="_ _2"></span>ecute<span class="_ _5"> </span>almost<span class="_ _5"> </span>all<span class="_ _5"> </span>the<span class="_ _3"> </span>code<span class="_ _5"> </span>nati<span class="_ _2"></span>v<span class="_ _2"></span>ely<span class="_ _2"></span>.</div><div class="t m0 x33 h5 y96 ff2 fs3 fc0 sc0 ls0 ws0">Figure<span class="_ _3"> </span>12<span class="_ _5"> </span>breaks<span class="_ _3"> </span>do<span class="_ _2"></span>wn<span class="_ _3"> </span>the<span class="_ _5"> </span>total<span class="_ _3"> </span>e<span class="_ _2"></span>xecution<span class="_ _5"> </span>time<span class="_ _3"> </span>into<span class="_ _3"> </span>four<span class="_ _5"> </span>activ-</div><div class="t m0 x32 h5 y97 ff2 fs3 fc0 sc0 ls0 ws0">ities:<span class="_ _3"> </span>interpreting<span class="_ _6"> </span>bytecodes<span class="_ _3"> </span>while<span class="_ _6"> </span>not<span class="_ _3"> </span>recording,<span class="_ _6"> </span>recording<span class="_ _6"> </span>traces</div><div class="t m0 x32 h5 y98 ff2 fs3 fc0 sc0 ls0 ws0">(including<span class="_ _8"> </span>time<span class="_ _8"> </span>taken<span class="_ _8"> </span>to<span class="_ _8"> </span>interpret<span class="_ _8"> </span>the<span class="_ _d"> </span>recorded<span class="_ _6"> </span>trace),<span class="_ _d"> </span>compiling</div><div class="t m0 x32 h5 y99 ff2 fs3 fc0 sc0 ls0 ws0">traces<span class="_ _5"> </span>to<span class="_ _5"> </span>native<span class="_ _5"> </span>code,<span class="_ _5"> </span>and<span class="_ _5"> </span>executing<span class="_ _5"> </span>nati<span class="_ _2"></span>ve<span class="_ _5"> </span>code<span class="_ _5"> </span>traces.</div><div class="t m0 x33 h5 y9a ff2 fs3 fc0 sc0 ls0 ws0">These<span class="_ _8"> </span>detailed<span class="_ _d"> </span>metrics<span class="_ _8"> </span>allow<span class="_ _8"> </span>us<span class="_ _8"> </span>to<span class="_ _d"> </span>estimate<span class="_ _8"> </span>parameters<span class="_ _8"> </span>for<span class="_ _d"> </span>a</div><div class="t m0 x32 h5 y9b ff2 fs3 fc0 sc0 ls0 ws0">simple<span class="_ _6"> </span>model<span class="_ _6"> </span>of<span class="_ _6"> </span>tracing<span class="_ _6"> </span>performance.<span class="_ _6"> </span>These<span class="_ _8"> </span>estimates<span class="_ _6"> </span>should<span class="_ _6"> </span>be</div><div class="t m0 x32 h5 y9c ff2 fs3 fc0 sc0 ls0 ws0">considered<span class="_ _8"> </span>very<span class="_ _8"> </span>rough,<span class="_ _8"> </span>as<span class="_ _8"> </span>the<span class="_ _8"> </span>values<span class="_ _8"> </span>observed<span class="_ _8"> </span>on<span class="_ _8"> </span>the<span class="_ _8"> </span>individual</div><div class="t m0 x32 h5 y9d ff2 fs3 fc0 sc0 ls0 ws0">benchmarks<span class="_ _d"> </span>ha<span class="_ _2"></span>ve<span class="_ _8"> </span>large<span class="_ _d"> </span>standard<span class="_ _8"> </span>deviations<span class="_ _d"> </span>(on<span class="_ _8"> </span>the<span class="_ _d"> </span>order<span class="_ _d"> </span>of<span class="_ _8"> </span>the</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div></div>