mirror of
https://github.com/pdf2htmlEX/pdf2htmlEX.git
synced 2024-12-22 04:50:09 +00:00
2 lines
92 KiB
Plaintext
2 lines
92 KiB
Plaintext
<div class="pd w0 h0"><div id="pfb" class="pf" data-page-no="b"><div class="pc pcb"><img class="bi x2f y263 w4 h20" alt="" src=""/><div class="c xb7 y264 w23 h21"><div class="t m0 xb8 h5 y265 ff17 fs10 fc0 sc0 ls0 ws0">!"</div><div class="t m0 xb8 h5 y266 ff17 fs10 fc0 sc0 ls0 ws0">#"</div><div class="t m0 x6a h5 y52 ff17 fs10 fc0 sc0 ls0 ws0">$!"</div><div class="t m0 x6a h5 y1b0 ff17 fs10 fc0 sc0 ls0 ws0">$#"</div><div class="t m0 x6a h5 y175 ff17 fs10 fc0 sc0 ls0 ws0">%!"</div><div class="t m0 x6a h5 y267 ff17 fs10 fc0 sc0 ls0 ws0">%#"</div></div><div class="c xb y268 w24 h22"><div class="t m0 x6a h5 y269 ff17 fs10 fc0 sc0 ls0 ws0">&<span class="_ _2"></span>'<span class="_ _2"></span>()*+,"</div></div><div class="c xb y63 w25 h22"><div class="t m0 x6a h5 y269 ff17 fs10 fc0 sc0 ls0 ws0">-./"</div></div><div class="c xb y259 w26 h22"><div class="t m0 x6a h5 y269 ff17 fs10 fc0 sc0 ls0 ws0">01"</div></div><div class="t m0 x2f h5 y161 ff1 fs3 fc0 sc0 ls0 ws0">Figure<span class="_ _3"> </span>10.<span class="_ _1"> </span><span class="ff2">Speedup<span class="_ _3"> </span>vs.<span class="_ _3"> </span>a<span class="_ _3"> </span>baseline<span class="_ _3"> </span>Jav<span class="_ _2"></span>aScript<span class="_ _3"> </span>interpreter<span class="_ _3"> </span>(SpiderMonkey)<span class="_ _3"> </span>for<span class="_ _3"> </span>our<span class="_ _3"> </span>trace-based<span class="_ _3"> </span>JIT<span class="_ _3"> </span>compiler<span class="_ _2"></span>,<span class="_ _3"> </span>Apple’<span class="_ _2"></span>s<span class="_ _3"> </span>SquirrelFish<span class="_ _3"> </span>Extreme</span></div><div class="t m0 x2f h5 y162 ff2 fs3 fc0 sc0 ls0 ws0">inline<span class="_ _5"> </span>threading<span class="_ _7"> </span>interpreter<span class="_ _5"> </span>and<span class="_ _7"> </span>Google’<span class="_ _2"></span>s<span class="_ _7"> </span>V8<span class="_ _5"> </span>JS<span class="_ _7"> </span>compiler<span class="_ _2"></span>.<span class="_ _5"> </span>Our<span class="_ _7"> </span>system<span class="_ _5"> </span>generates<span class="_ _7"> </span>particularly<span class="_ _5"> </span>ef<span class="_ _2"></span>ficient<span class="_ _7"> </span>code<span class="_ _5"> </span>for<span class="_ _7"> </span>programs<span class="_ _5"> </span>that<span class="_ _7"> </span>benefit<span class="_ _5"> </span>most<span class="_ _7"> </span>from</div><div class="t m0 x2f h5 y163 ff2 fs3 fc0 sc0 ls0 ws0">type<span class="_ _3"> </span>specialization,<span class="_ _5"> </span>which<span class="_ _5"> </span>includes<span class="_ _3"> </span>SunSpider<span class="_ _5"> </span>Benchmark<span class="_ _3"> </span>programs<span class="_ _5"> </span>that<span class="_ _3"> </span>perform<span class="_ _5"> </span>bit<span class="_ _3"> </span>manipulation.<span class="_ _5"> </span>W<span class="_ _b"></span>e<span class="_ _3"> </span>type-specialize<span class="_ _5"> </span>the<span class="_ _3"> </span>code<span class="_ _5"> </span>in<span class="_ _3"> </span>question</div><div class="t m0 x2f h5 y164 ff2 fs3 fc0 sc0 ls0 ws0">to<span class="_ _3"> </span>use<span class="_ _3"> </span>integer<span class="_ _3"> </span>arithmetic,<span class="_ _3"> </span>which<span class="_ _3"> </span>substantially<span class="_ _6"> </span>impro<span class="_ _2"></span>ves<span class="_ _3"> </span>performance.<span class="_ _3"> </span>For<span class="_ _3"> </span>one<span class="_ _3"> </span>of<span class="_ _3"> </span>the<span class="_ _3"> </span>benchmark<span class="_ _3"> </span>programs<span class="_ _3"> </span>we<span class="_ _6"> </span>e<span class="_ _2"></span>xecute<span class="_ _3"> </span>25<span class="_ _3"> </span>times<span class="_ _3"> </span>faster<span class="_ _3"> </span>than</div><div class="t m0 x2f h5 y165 ff2 fs3 fc0 sc0 ls0 ws0">the<span class="_ _5"> </span>SpiderMonkey<span class="_ _5"> </span>interpreter<span class="_ _2"></span>,<span class="_ _5"> </span>and<span class="_ _5"> </span>almost<span class="_ _5"> </span>5<span class="_ _5"> </span>times<span class="_ _3"> </span>f<span class="_ _2"></span>aster<span class="_ _5"> </span>than<span class="_ _5"> </span>V8<span class="_ _5"> </span>and<span class="_ _3"> </span>SFX.<span class="_ _5"> </span>F<span class="_ _2"></span>or<span class="_ _5"> </span>a<span class="_ _5"> </span>large<span class="_ _5"> </span>number<span class="_ _5"> </span>of<span class="_ _5"> </span>benchmarks<span class="_ _3"> </span>all<span class="_ _5"> </span>three<span class="_ _5"> </span>VMs<span class="_ _5"> </span>produce<span class="_ _5"> </span>similar</div><div class="t m0 x2f h5 y166 ff2 fs3 fc0 sc0 ls0 ws0">results.<span class="_ _5"> </span>W<span class="_ _b"></span>e<span class="_ _3"> </span>perform<span class="_ _5"> </span>w<span class="_ _2"></span>orst<span class="_ _5"> </span>on<span class="_ _5"> </span>benchmark<span class="_ _3"> </span>programs<span class="_ _5"> </span>that<span class="_ _5"> </span>we<span class="_ _5"> </span>do<span class="_ _5"> </span>not<span class="_ _5"> </span>trace<span class="_ _5"> </span>and<span class="_ _5"> </span>instead<span class="_ _3"> </span>f<span class="_ _2"></span>all<span class="_ _5"> </span>back<span class="_ _5"> </span>onto<span class="_ _5"> </span>the<span class="_ _3"> </span>interpreter<span class="_ _b"></span>.<span class="_ _5"> </span>This<span class="_ _5"> </span>includes<span class="_ _3"> </span>the<span class="_ _5"> </span>recursi<span class="_ _2"></span>v<span class="_ _2"></span>e</div><div class="t m0 x2f h5 y167 ff2 fs3 fc0 sc0 ls0 ws0">benchmarks<span class="_ _5"> </span><span class="ff7">access-binary-trees<span class="_ _5"> </span></span>and<span class="_ _3"> </span><span class="ff7">control-flow-recursive<span class="_ _2"></span><span class="ff2">,<span class="_ _5"> </span>for<span class="_ _5"> </span>which<span class="_ _5"> </span>we<span class="_ _3"> </span>currently<span class="_ _5"> </span>don’<span class="_ _2"></span>t<span class="_ _5"> </span>generate<span class="_ _5"> </span>any<span class="_ _5"> </span>nativ<span class="_ _2"></span>e<span class="_ _5"> </span>code.</span></span></div><div class="t m0 x2f h5 y16a ff2 fs3 fc0 sc0 ls0 ws0">In<span class="_ _3"> </span>particular<span class="_ _2"></span>,<span class="_ _5"> </span>the<span class="_ _3"> </span><span class="ff7">bitops<span class="_ _5"> </span></span>benchmarks<span class="_ _3"> </span>are<span class="_ _5"> </span>short<span class="_ _3"> </span>programs<span class="_ _3"> </span>that<span class="_ _5"> </span>per-</div><div class="t m0 x2f h5 y16b ff2 fs3 fc0 sc0 ls0 ws0">form<span class="_ _3"> </span>many<span class="_ _3"> </span>bitwise<span class="_ _3"> </span>operations,<span class="_ _5"> </span>so<span class="_ _3"> </span>TraceMonke<span class="_ _2"></span>y<span class="_ _3"> </span>can<span class="_ _3"> </span>co<span class="_ _2"></span>ver<span class="_ _3"> </span>the<span class="_ _3"> </span>en-</div><div class="t m0 x2f h5 y16c ff2 fs3 fc0 sc0 ls0 ws0">tire<span class="_ _5"> </span>program<span class="_ _5"> </span>with<span class="_ _5"> </span>1<span class="_ _5"> </span>or<span class="_ _5"> </span>2<span class="_ _3"> </span>traces<span class="_ _5"> </span>that<span class="_ _5"> </span>operate<span class="_ _5"> </span>on<span class="_ _5"> </span>inte<span class="_ _2"></span>gers.<span class="_ _5"> </span>T<span class="_ _2"></span>raceMon-</div><div class="t m0 x2f h5 y16d ff2 fs3 fc0 sc0 ls0 ws0">key<span class="_ _5"> </span>runs<span class="_ _5"> </span>all<span class="_ _3"> </span>the<span class="_ _5"> </span>other<span class="_ _3"> </span>progr<span class="_ _2"></span>ams<span class="_ _5"> </span>in<span class="_ _3"> </span>this<span class="_ _5"> </span>set<span class="_ _3"> </span>almost<span class="_ _5"> </span>entirely<span class="_ _5"> </span>as<span class="_ _3"> </span>nati<span class="_ _2"></span>v<span class="_ _2"></span>e</div><div class="t m0 x2f h5 y16e ff2 fs3 fc0 sc0 ls0 ws0">code.</div><div class="t m0 x34 h5 yd4 ff7 fs3 fc0 sc0 ls0 ws0">regexp-dna<span class="_ _1"> </span><span class="ff2">is<span class="_ _e"> </span>dominated<span class="_ _1"> </span>by<span class="_ _e"> </span>regular<span class="_ _1"> </span>expression<span class="_ _1"> </span>matching,</span></div><div class="t m0 x2f h5 yf4 ff2 fs3 fc0 sc0 ls0 ws0">which<span class="_ _5"> </span>is<span class="_ _5"> </span>implemented<span class="_ _3"> </span>in<span class="_ _5"> </span>all<span class="_ _5"> </span>3<span class="_ _5"> </span>VMs<span class="_ _5"> </span>by<span class="_ _5"> </span>a<span class="_ _3"> </span>special<span class="_ _5"> </span>re<span class="_ _2"></span>gular<span class="_ _5"> </span>expression</div><div class="t m0 x2f h5 yf5 ff2 fs3 fc0 sc0 ls0 ws0">compiler<span class="_ _2"></span>.<span class="_ _3"> </span>Thus,<span class="_ _3"> </span>performance<span class="_ _3"> </span>on<span class="_ _3"> </span>this<span class="_ _3"> </span>benchmark<span class="_ _3"> </span>has<span class="_ _3"> </span>little<span class="_ _6"> </span>relation</div><div class="t m0 x2f h5 yf6 ff2 fs3 fc0 sc0 ls0 ws0">to<span class="_ _5"> </span>the<span class="_ _5"> </span>trace<span class="_ _3"> </span>compilation<span class="_ _5"> </span>approach<span class="_ _5"> </span>discussed<span class="_ _5"> </span>in<span class="_ _5"> </span>this<span class="_ _5"> </span>paper<span class="_ _2"></span>.</div><div class="t m0 x34 h5 yf7 ff2 fs3 fc0 sc0 ls0 ws0">T<span class="_ _2"></span>raceMonke<span class="_ _2"></span>y’<span class="_ _2"></span>s<span class="_ _5"> </span>smaller<span class="_ _3"> </span>speedups<span class="_ _3"> </span>on<span class="_ _3"> </span>the<span class="_ _5"> </span>other<span class="_ _3"> </span>benchmarks<span class="_ _3"> </span>can</div><div class="t m0 x2f h5 y26a ff2 fs3 fc0 sc0 ls0 ws0">be<span class="_ _5"> </span>attributed<span class="_ _5"> </span>to<span class="_ _5"> </span>a<span class="_ _5"> </span>few<span class="_ _5"> </span>specific<span class="_ _5"> </span>causes:</div><div class="t m0 x36 h4 y26b ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 x37 h5 y26c ff2 fs3 fc0 sc0 ls0 ws0">The<span class="_ _e"> </span>implementation<span class="_ _e"> </span>does<span class="_ _e"> </span>not<span class="_ _e"> </span>currently<span class="_ _e"> </span>trace<span class="_ _e"> </span>recursion,<span class="_ _e"> </span>so</div><div class="t m0 x37 h5 y26d ff2 fs3 fc0 sc0 ls0 ws0">T<span class="_ _2"></span>raceMonke<span class="_ _2"></span>y<span class="_ _e"> </span>achie<span class="_ _2"></span>ves<span class="_ _1"> </span>a<span class="_ _e"> </span>small<span class="_ _1"> </span>speedup<span class="_ _e"> </span>or<span class="_ _e"> </span>no<span class="_ _e"> </span>speedup<span class="_ _1"> </span>on</div><div class="t m0 x37 h5 y26e ff2 fs3 fc0 sc0 ls0 ws0">benchmarks<span class="_ _1b"> </span>that<span class="_ _1b"> </span>use<span class="_ _e"> </span>recursion<span class="_ _1b"> </span>extensi<span class="_ _2"></span>vely:<span class="_ _1b"> </span><span class="ff7">3d-cube</span>,<span class="_ _e"> </span><span class="ff7">3d-</span></div><div class="t m0 x37 h5 y26f ff7 fs3 fc0 sc0 ls0 ws0">raytrace<span class="ff2">,<span class="_ _3"> </span></span>access-binary-trees<span class="ff2">,<span class="_ _6"> </span></span>string-tagcloud<span class="ff2">,<span class="_ _3"> </span>and</span></div><div class="t m0 x37 h5 y270 ff7 fs3 fc0 sc0 ls0 ws0">controlflow-recursive<span class="ff2">.</span></div><div class="t m0 x36 h4 y271 ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 x37 h5 yfe ff2 fs3 fc0 sc0 ls0 ws0">The<span class="_ _8"> </span>implementation<span class="_ _6"> </span>does<span class="_ _8"> </span>not<span class="_ _8"> </span>currently<span class="_ _8"> </span>trace<span class="_ _8"> </span><span class="ff7">eval<span class="_ _8"> </span></span>and<span class="_ _8"> </span>some</div><div class="t m0 x37 h5 yff ff2 fs3 fc0 sc0 ls0 ws0">other<span class="_ _1"> </span>functions<span class="_ _1"> </span>implemented<span class="_ _d"> </span>in<span class="_ _1"> </span>C.<span class="_ _1"> </span>Because<span class="_ _d"> </span><span class="ff7">date-format-</span></div><div class="t m0 x37 h5 y100 ff7 fs3 fc0 sc0 ls0 ws0">tofte<span class="_ _8"> </span><span class="ff2">and<span class="_ _8"> </span></span>date-format-xparb<span class="_ _8"> </span><span class="ff2">use<span class="_ _8"> </span>such<span class="_ _8"> </span>functions<span class="_ _8"> </span>in<span class="_ _8"> </span>their</span></div><div class="t m0 x37 h5 y101 ff2 fs3 fc0 sc0 ls0 ws0">main<span class="_ _5"> </span>loops,<span class="_ _5"> </span>we<span class="_ _3"> </span>do<span class="_ _5"> </span>not<span class="_ _5"> </span>trace<span class="_ _5"> </span>them.</div><div class="t m0 x36 h4 y272 ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 x37 h5 y98 ff2 fs3 fc0 sc0 ls0 ws0">The<span class="_ _8"> </span>implementation<span class="_ _8"> </span>does<span class="_ _d"> </span>not<span class="_ _8"> </span>currently<span class="_ _8"> </span>trace<span class="_ _8"> </span>through<span class="_ _d"> </span>re<span class="_ _2"></span>gular</div><div class="t m0 x37 h5 y99 ff2 fs3 fc0 sc0 ls0 ws0">expression<span class="_ _6"> </span><span class="ff7">replace<span class="_ _d"> </span></span>operations.<span class="_ _6"> </span>The<span class="_ _d"> </span>replace<span class="_ _6"> </span>function<span class="_ _d"> </span>can<span class="_ _6"> </span>be</div><div class="t m0 x37 h5 y9a ff2 fs3 fc0 sc0 ls0 ws0">passed<span class="_ _3"> </span>a<span class="_ _5"> </span>function<span class="_ _5"> </span>object<span class="_ _3"> </span>used<span class="_ _5"> </span>to<span class="_ _3"> </span>compute<span class="_ _5"> </span>the<span class="_ _3"> </span>replacement<span class="_ _5"> </span>text.</div><div class="t m0 x37 h5 y9b ff2 fs3 fc0 sc0 ls0 ws0">Our<span class="_ _6"> </span>implementation<span class="_ _8"> </span>currently<span class="_ _6"> </span>does<span class="_ _8"> </span>not<span class="_ _8"> </span>trace<span class="_ _6"> </span>functions<span class="_ _8"> </span>called</div><div class="t m0 x37 h5 y9c ff2 fs3 fc0 sc0 ls0 ws0">as<span class="_ _5"> </span>replace<span class="_ _5"> </span>functions.<span class="_ _5"> </span>The<span class="_ _5"> </span>run<span class="_ _5"> </span>time<span class="_ _5"> </span>of<span class="_ _5"> </span><span class="ff7">string-unpack-code<span class="_ _5"> </span></span>is</div><div class="t m0 x37 h5 y9d ff2 fs3 fc0 sc0 ls0 ws0">dominated<span class="_ _5"> </span>by<span class="_ _5"> </span>such<span class="_ _3"> </span>a<span class="_ _5"> </span><span class="ff7">replace<span class="_ _5"> </span></span>call.</div><div class="t m0 x8 h4 y273 ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 xb2 h5 y16a ff2 fs3 fc0 sc0 ls0 ws0">T<span class="_ _b"></span>wo<span class="_ _8"> </span>programs<span class="_ _d"> </span>trace<span class="_ _8"> </span>well,<span class="_ _d"> </span>b<span class="_ _2"></span>ut<span class="_ _8"> </span>have<span class="_ _6"> </span>a<span class="_ _d"> </span>long<span class="_ _8"> </span>compilation<span class="_ _d"> </span>time.</div><div class="t m0 xb2 h5 y16b ff7 fs3 fc0 sc0 ls0 ws0">access-nbody<span class="_ _7"> </span><span class="ff2">forms<span class="_ _5"> </span>a<span class="_ _7"> </span>large<span class="_ _7"> </span>number<span class="_ _7"> </span>of<span class="_ _5"> </span>traces<span class="_ _7"> </span>(81).<span class="_ _7"> </span></span>crypto-md5</div><div class="t m0 xb2 h5 y16c ff2 fs3 fc0 sc0 ls0 ws0">forms<span class="_ _3"> </span>one<span class="_ _3"> </span>v<span class="_ _2"></span>ery<span class="_ _3"> </span>long<span class="_ _3"> </span>trace.<span class="_ _3"> </span>W<span class="_ _b"></span>e<span class="_ _3"> </span>e<span class="_ _2"></span>xpect<span class="_ _3"> </span>to<span class="_ _3"> </span>impro<span class="_ _2"></span>ve<span class="_ _3"> </span>performance</div><div class="t m0 xb2 h5 y16d ff2 fs3 fc0 sc0 ls0 ws0">on<span class="_ _3"> </span>this<span class="_ _5"> </span>programs<span class="_ _3"> </span>by<span class="_ _5"> </span>improving<span class="_ _5"> </span>the<span class="_ _3"> </span>compilation<span class="_ _5"> </span>speed<span class="_ _3"> </span>of<span class="_ _5"> </span>nano-</div><div class="t m0 xb2 h5 y16e ff2 fs3 fc0 sc0 ls0 ws0">jit.</div><div class="t m0 x8 h4 y23 ff3 fs2 fc0 sc0 ls0 ws0">•</div><div class="t m0 xb2 h5 y274 ff2 fs3 fc0 sc0 ls0 ws0">Some<span class="_ _d"> </span>programs<span class="_ _d"> </span>trace<span class="_ _1"> </span>v<span class="_ _2"></span>ery<span class="_ _d"> </span>well,<span class="_ _d"> </span>and<span class="_ _1"> </span>speed<span class="_ _d"> </span>up<span class="_ _d"> </span>compared<span class="_ _d"> </span>to</div><div class="t m0 xb2 h5 y170 ff2 fs3 fc0 sc0 ls0 ws0">the<span class="_ _6"> </span>interpreter<span class="_ _2"></span>,<span class="_ _6"> </span>but<span class="_ _6"> </span>are<span class="_ _6"> </span>not<span class="_ _6"> </span>as<span class="_ _6"> </span>fast<span class="_ _6"> </span>as<span class="_ _6"> </span>SFX<span class="_ _6"> </span>and/or<span class="_ _8"> </span>V8,<span class="_ _6"> </span>namely</div><div class="t m0 xb2 h5 y275 ff7 fs3 fc0 sc0 ls0 ws0">bitops-bits-in-byte<span class="ff2">,<span class="_ _c"> </span></span>bitops-nsieve-bits<span class="ff2">,<span class="_ _29"> </span></span>access-</div><div class="t m0 xb2 h5 y276 ff7 fs3 fc0 sc0 ls0 ws0">fannkuch<span class="ff2">,<span class="_ _3"> </span></span>access-nsieve<span class="ff2">,<span class="_ _6"> </span>and<span class="_ _3"> </span></span>crypto-aes<span class="ff2">.<span class="_ _3"> </span>The<span class="_ _3"> </span>reason<span class="_ _6"> </span>is</span></div><div class="t m0 xb2 h5 y277 ff2 fs3 fc0 sc0 ls0 ws0">not<span class="_ _d"> </span>clear,<span class="_ _d"> </span>b<span class="_ _2"></span>ut<span class="_ _d"> </span>all<span class="_ _1"> </span>of<span class="_ _d"> </span>these<span class="_ _d"> </span>programs<span class="_ _d"> </span>have<span class="_ _d"> </span>nested<span class="_ _d"> </span>loops<span class="_ _d"> </span>with</div><div class="t m0 xb2 h5 y278 ff2 fs3 fc0 sc0 ls0 ws0">small<span class="_ _5"> </span>bodies,<span class="_ _3"> </span>so<span class="_ _5"> </span>we<span class="_ _5"> </span>suspect<span class="_ _5"> </span>that<span class="_ _3"> </span>the<span class="_ _5"> </span>implementation<span class="_ _5"> </span>has<span class="_ _3"> </span>a<span class="_ _5"> </span>rela-</div><div class="t m0 xb2 h5 y279 ff2 fs3 fc0 sc0 ls0 ws0">tiv<span class="_ _2"></span>ely<span class="_ _5"> </span>high<span class="_ _5"> </span>cost<span class="_ _5"> </span>for<span class="_ _5"> </span>calling<span class="_ _5"> </span>nested<span class="_ _5"> </span>traces.<span class="_ _5"> </span><span class="ff7">string-fasta<span class="_ _5"> </span></span>traces</div><div class="t m0 xb2 h5 y27a ff2 fs3 fc0 sc0 ls0 ws0">well,<span class="_ _5"> </span>b<span class="_ _2"></span>ut<span class="_ _5"> </span>its<span class="_ _5"> </span>run<span class="_ _7"> </span>time<span class="_ _5"> </span>is<span class="_ _5"> </span>dominated<span class="_ _5"> </span>by<span class="_ _5"> </span>string<span class="_ _5"> </span>processing<span class="_ _7"> </span>builtins,</div><div class="t m0 xb2 h5 y27b ff2 fs3 fc0 sc0 ls0 ws0">which<span class="_ _5"> </span>are<span class="_ _3"> </span>unaf<span class="_ _2"></span>fected<span class="_ _5"> </span>by<span class="_ _5"> </span>tracing<span class="_ _5"> </span>and<span class="_ _3"> </span>seem<span class="_ _5"> </span>to<span class="_ _5"> </span>be<span class="_ _3"> </span>less<span class="_ _5"> </span>ef<span class="_ _2"></span>ficient<span class="_ _5"> </span>in</div><div class="t m0 xb2 h5 y27c ff2 fs3 fc0 sc0 ls0 ws0">SpiderMonkey<span class="_ _5"> </span>than<span class="_ _5"> </span>in<span class="_ _5"> </span>the<span class="_ _5"> </span>two<span class="_ _5"> </span>other<span class="_ _5"> </span>VMs.</div><div class="t m0 x33 h5 yd2 ff1 fs3 fc0 sc0 ls0 ws0">Detailed<span class="_ _5"> </span>perf<span class="_ _2"></span>ormance<span class="_ _5"> </span>metrics.<span class="_ _5"> </span><span class="ff2">In<span class="_ _5"> </span>Figure<span class="_ _5"> </span>11<span class="_ _7"> </span>we<span class="_ _5"> </span>show<span class="_ _5"> </span>the<span class="_ _5"> </span>frac-</span></div><div class="t m0 x32 h5 y205 ff2 fs3 fc0 sc0 ls0 ws0">tion<span class="_ _5"> </span>of<span class="_ _3"> </span>instructions<span class="_ _5"> </span>interpreted<span class="_ _5"> </span>and<span class="_ _5"> </span>the<span class="_ _3"> </span>fraction<span class="_ _5"> </span>of<span class="_ _5"> </span>instructions<span class="_ _5"> </span>exe-</div><div class="t m0 x32 h5 y94 ff2 fs3 fc0 sc0 ls0 ws0">cuted<span class="_ _5"> </span>as<span class="_ _5"> </span>nati<span class="_ _2"></span>v<span class="_ _2"></span>e<span class="_ _5"> </span>code.<span class="_ _5"> </span>This<span class="_ _7"> </span>figure<span class="_ _5"> </span>shows<span class="_ _5"> </span>that<span class="_ _7"> </span>for<span class="_ _5"> </span>many<span class="_ _5"> </span>programs,<span class="_ _5"> </span>we</div><div class="t m0 x32 h5 y95 ff2 fs3 fc0 sc0 ls0 ws0">are<span class="_ _5"> </span>able<span class="_ _5"> </span>to<span class="_ _3"> </span>e<span class="_ _2"></span>x<span class="_ _2"></span>ecute<span class="_ _5"> </span>almost<span class="_ _5"> </span>all<span class="_ _5"> </span>the<span class="_ _3"> </span>code<span class="_ _5"> </span>nati<span class="_ _2"></span>v<span class="_ _2"></span>ely<span class="_ _2"></span>.</div><div class="t m0 x33 h5 y96 ff2 fs3 fc0 sc0 ls0 ws0">Figure<span class="_ _3"> </span>12<span class="_ _5"> </span>breaks<span class="_ _3"> </span>do<span class="_ _2"></span>wn<span class="_ _3"> </span>the<span class="_ _5"> </span>total<span class="_ _3"> </span>e<span class="_ _2"></span>xecution<span class="_ _5"> </span>time<span class="_ _3"> </span>into<span class="_ _3"> </span>four<span class="_ _5"> </span>activ-</div><div class="t m0 x32 h5 y97 ff2 fs3 fc0 sc0 ls0 ws0">ities:<span class="_ _3"> </span>interpreting<span class="_ _6"> </span>bytecodes<span class="_ _3"> </span>while<span class="_ _6"> </span>not<span class="_ _3"> </span>recording,<span class="_ _6"> </span>recording<span class="_ _6"> </span>traces</div><div class="t m0 x32 h5 y98 ff2 fs3 fc0 sc0 ls0 ws0">(including<span class="_ _8"> </span>time<span class="_ _8"> </span>taken<span class="_ _8"> </span>to<span class="_ _8"> </span>interpret<span class="_ _8"> </span>the<span class="_ _d"> </span>recorded<span class="_ _6"> </span>trace),<span class="_ _d"> </span>compiling</div><div class="t m0 x32 h5 y99 ff2 fs3 fc0 sc0 ls0 ws0">traces<span class="_ _5"> </span>to<span class="_ _5"> </span>native<span class="_ _5"> </span>code,<span class="_ _5"> </span>and<span class="_ _5"> </span>executing<span class="_ _5"> </span>nati<span class="_ _2"></span>ve<span class="_ _5"> </span>code<span class="_ _5"> </span>traces.</div><div class="t m0 x33 h5 y9a ff2 fs3 fc0 sc0 ls0 ws0">These<span class="_ _8"> </span>detailed<span class="_ _d"> </span>metrics<span class="_ _8"> </span>allow<span class="_ _8"> </span>us<span class="_ _8"> </span>to<span class="_ _d"> </span>estimate<span class="_ _8"> </span>parameters<span class="_ _8"> </span>for<span class="_ _d"> </span>a</div><div class="t m0 x32 h5 y9b ff2 fs3 fc0 sc0 ls0 ws0">simple<span class="_ _6"> </span>model<span class="_ _6"> </span>of<span class="_ _6"> </span>tracing<span class="_ _6"> </span>performance.<span class="_ _6"> </span>These<span class="_ _8"> </span>estimates<span class="_ _6"> </span>should<span class="_ _6"> </span>be</div><div class="t m0 x32 h5 y9c ff2 fs3 fc0 sc0 ls0 ws0">considered<span class="_ _8"> </span>very<span class="_ _8"> </span>rough,<span class="_ _8"> </span>as<span class="_ _8"> </span>the<span class="_ _8"> </span>values<span class="_ _8"> </span>observed<span class="_ _8"> </span>on<span class="_ _8"> </span>the<span class="_ _8"> </span>individual</div><div class="t m0 x32 h5 y9d ff2 fs3 fc0 sc0 ls0 ws0">benchmarks<span class="_ _d"> </span>ha<span class="_ _2"></span>ve<span class="_ _8"> </span>large<span class="_ _d"> </span>standard<span class="_ _8"> </span>deviations<span class="_ _d"> </span>(on<span class="_ _8"> </span>the<span class="_ _d"> </span>order<span class="_ _d"> </span>of<span class="_ _8"> </span>the</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div></div>
|