1
0
mirror of https://github.com/pdf2htmlEX/pdf2htmlEX.git synced 2024-12-22 04:50:09 +00:00
pdf2htmlEX/demo/cheat3.page
2013-09-28 13:30:57 +08:00

2 lines
56 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<div class="pd w0 h0"><div id="pf3" class="pf" data-page-no="3"><div class="pc pc3"><img class="bi x0 y0 w2 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Theoretical<span class="_ _0"> </span>Computer<span class="_ _0"> </span>Science<span class="_ _0"> </span>Cheat<span class="_ _0"> </span>Sheet</div><div class="t m0 xc6 h4 y232 ff3 fs0 fc0 sc0 ls0 ws0">π <span class="ff4">≈<span class="_ _7"> </span><span class="ff2">3</span></span>.<span class="ff2">14159,<span class="_ _38"> </span></span>e<span class="_ _7"> </span><span class="ff4">≈<span class="_ _7"> </span><span class="ff2">2</span></span>.<span class="ff2">71828,<span class="_ _38"> </span></span>γ <span class="ff4">≈<span class="_ _7"> </span><span class="ff2">0</span></span>.<span class="ff2">57721,<span class="_ _39"> </span></span>φ<span class="_ _7"> </span><span class="ff2">=</span></div><div class="t m0 x15c h5 y233 ff5 fs1 fc0 sc0 ls0 ws0">1+</div><div class="t m0 x15a h5 y234 ff8 fs1 fc0 sc0 ls0 ws0">√</div><div class="t m0 xb5 h5 y233 ff5 fs1 fc0 sc0 ls0 ws0">5</div><div class="t m0 x75 h5 y235 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x2e h4 y232 ff4 fs0 fc0 sc0 ls0 ws0">≈<span class="_ _7"> </span><span class="ff2">1<span class="ff3">.</span>61803,</span></div><div class="t m0 xb6 h3 y236 ff2 fs0 fc0 sc0 ls0 ws0">ˆ</div><div class="t m0 x13b h3 y232 ff3 fs0 fc0 sc0 ls0 ws0">φ<span class="_ _7"> </span><span class="ff2">=</span></div><div class="t m0 xb0 h5 y233 ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff8"></span></div><div class="t m0 x6f h5 y234 ff8 fs1 fc0 sc0 ls0 ws0">√</div><div class="t m0 x19 h5 y233 ff5 fs1 fc0 sc0 ls0 ws0">5</div><div class="t m0 x16a h5 y235 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x52 h4 y232 ff4 fs0 fc0 sc0 ls1 ws0">≈−<span class="_ _b"></span><span class="ff3 ls0">.<span class="ff2">61803</span></span></div><div class="t m0 x16c h3 y237 ff3 fs0 fc0 sc0 ls0 ws0">i<span class="_ _3a"> </span><span class="ff2">2</span></div><div class="t m0 x107 h5 y238 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x14b h3 y237 ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 xfd h5 y239 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x25 h3 y237 ff2 fs0 fc0 sc0 ls0 ws0">General<span class="_ _3b"> </span>Probabilit<span class="_ _5"></span>y</div><div class="t m0 x81 h3 y23a ff2 fs0 fc0 sc0 ls0 ws0">1<span class="_ _3c"> </span>2<span class="_ _1d"> </span>2</div><div class="t m0 x13d h3 y11d ff2 fs0 fc0 sc0 ls0 ws0">Bernoulli Num<span class="_ _5"></span>b<span class="_ _3"></span>ers (<span class="ff3">B</span></div><div class="t m0 xef h5 y23b ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x137 h4 y11d ff2 fs0 fc0 sc0 ls1 ws0">=0<span class="_ _b"></span>,<span class="_ _15"></span>o<span class="_ _9"></span>d<span class="_ _b"></span>d<span class="_ _3"></span><span class="ff3 ls0">i<span class="_ _7"> </span><span class="ff4"><span class="ff2">=<span class="_ _7"> </span>1):</span></span></span></div><div class="t m0 xc3 h3 y23c ff3 fs0 fc0 sc0 ls0 ws0">B</div><div class="t m0 x16d h5 y23d ff5 fs1 fc0 sc0 ls0 ws0">0</div><div class="t m0 xca h3 y23e ff2 fs0 fc0 sc0 ls1 ws0">=1<span class="_ _b"></span>,<span class="_ _15"></span><span class="ff3 ls0">B</span></div><div class="t m0 x157 h5 y23d ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x11b h4 y23e ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff4"></span></div><div class="t m0 xa h5 y23f ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xa h5 y240 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x15e h3 y23e ff2 fs0 fc0 sc0 ls0 ws0">, <span class="ff3">B</span></div><div class="t m0 xef h5 y23d ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x73 h3 y23e ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x47 h5 y23f ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x47 h5 y240 ff5 fs1 fc0 sc0 ls0 ws0">6</div><div class="t m0 x14e h3 y23e ff2 fs0 fc0 sc0 ls0 ws0">, <span class="ff3">B</span></div><div class="t m0 x48 h5 y23d ff5 fs1 fc0 sc0 ls0 ws0">4</div><div class="t m0 x2c h4 y23e ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff4"></span></div><div class="t m0 x15a h5 y23f ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x75 h5 y240 ff5 fs1 fc0 sc0 ls0 ws0">30</div><div class="t m0 xb5 h3 y23e ff2 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 xfe h3 y15 ff3 fs0 fc0 sc0 ls0 ws0">B</div><div class="t m0 xf8 h5 y12a ff5 fs1 fc0 sc0 ls0 ws0">6</div><div class="t m0 x8 h3 y15 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 xf9 h5 y19 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xdc h5 y241 ff5 fs1 fc0 sc0 ls0 ws0">42</div><div class="t m0 x16e h3 y15 ff2 fs0 fc0 sc0 ls0 ws0">, <span class="ff3">B</span></div><div class="t m0 x25 h5 y12a ff5 fs1 fc0 sc0 ls0 ws0">8</div><div class="t m0 xa h4 y15 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff4"></span></div><div class="t m0 x72 h5 y19 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x16f h5 y241 ff5 fs1 fc0 sc0 ls0 ws0">30</div><div class="t m0 xc1 h3 y15 ff2 fs0 fc0 sc0 ls0 ws0">, <span class="ff3">B</span></div><div class="t m0 x49 h5 y12a ff5 fs1 fc0 sc0 ls0 ws0">10</div><div class="t m0 x68 h3 y15 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 xab h5 y19 ff5 fs1 fc0 sc0 ls0 ws0">5</div><div class="t m0 x3b h5 y241 ff5 fs1 fc0 sc0 ls0 ws0">66</div><div class="t m0 xac h3 y15 ff2 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x13d h3 y242 ff2 fs0 fc0 sc0 ls0 ws0">Change of base, quadratic formula:</div><div class="t m0 xc3 h3 y55 ff2 fs0 fc0 sc0 ls0 ws0">log</div><div class="t m0 xf6 h5 y243 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 xc4 h3 y55 ff3 fs0 fc0 sc0 ls0 ws0">x<span class="_ _7"> </span><span class="ff2">=</span></div><div class="t m0 x15d h3 y244 ff2 fs0 fc0 sc0 ls0 ws0">log</div><div class="t m0 x11b h5 y14f ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 xfa h3 y245 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 xdc h3 y246 ff2 fs0 fc0 sc0 ls0 ws0">log</div><div class="t m0 x151 h5 y247 ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 x153 h3 y246 ff3 fs0 fc0 sc0 ls0 ws0">b</div><div class="t m0 x26 h3 y55 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x72 h4 y248 ff4 fs0 fc0 sc0 ls0 ws0"><span class="ff3">b<span class="_ _8"> </span></span>±</div><div class="t m0 x5b h4 y249 ff4 fs0 fc0 sc0 ls0 ws0">√</div><div class="t m0 x126 h3 y245 ff3 fs0 fc0 sc0 ls0 ws0">b</div><div class="t m0 x48 h5 y24a ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x2c h4 y245 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff2">4<span class="ff3">ac</span></span></div><div class="t m0 x156 h3 y246 ff2 fs0 fc0 sc0 ls0 ws0">2<span class="ff3">a</span></div><div class="t m0 x3d h3 y55 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x13d h3 y59 ff2 fs0 fc0 sc0 ls0 ws0">Eulers n<span class="_ _5"></span>umber <span class="ff3">e</span>:</div><div class="t m0 xca h3 y24b ff3 fs0 fc0 sc0 ls0 ws0">e<span class="_ _7"> </span><span class="ff2 ls1">=1<span class="_ _5"></span>+</span></div><div class="t m0 x11b h5 y24c ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x11b h5 y24d ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 xfa h3 y24e ff2 fs0 fc0 sc0 ls0 ws0">+</div><div class="t m0 x154 h5 y24c ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x154 h5 y24d ff5 fs1 fc0 sc0 ls0 ws0">6</div><div class="t m0 x9b h3 y24e ff2 fs0 fc0 sc0 ls0 ws0">+</div><div class="t m0 x16f h5 y24c ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xef h5 y24d ff5 fs1 fc0 sc0 ls0 ws0">24</div><div class="t m0 xc1 h3 y24e ff2 fs0 fc0 sc0 ls0 ws0">+</div><div class="t m0 x5b h5 y24c ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x159 h5 y24d ff5 fs1 fc0 sc0 ls0 ws0">120</div><div class="t m0 x48 h4 y24e ff2 fs0 fc0 sc0 ls0 ws0">+<span class="_ _8"> </span><span class="ff4 ls4">···</span></div><div class="t m0 x15d h3 y24f ff2 fs0 fc0 sc0 ls0 ws0">lim</div><div class="t m0 xe8 h5 y250 ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8">→∞</span></div><div class="t m0 xfa h6 y251 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x57 h3 y24f ff2 fs0 fc0 sc0 ls2 ws0">1+</div><div class="t m0 x45 h3 y252 ff3 fs0 fc0 sc0 ls0 ws0">x</div><div class="t m0 x45 h3 y5e ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 xef h6 y253 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x29 h5 y254 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xd h3 y255 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">e</span></div><div class="t m0 x156 h5 y256 ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x68 h3 y255 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 xc4 h6 y142 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xcb h3 y257 ff2 fs0 fc0 sc0 ls2 ws0">1+</div><div class="t m0 x157 h5 y258 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xf9 h5 y32 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xdb h6 y142 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x151 h5 y30 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x155 h3 y259 ff3 fs0 fc0 sc0 ls1 ws0">&lt;e&lt;</div><div class="t m0 xef h6 y142 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x137 h3 y259 ff2 fs0 fc0 sc0 ls2 ws0">1+</div><div class="t m0 x49 h5 y258 ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x49 h5 y32 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x156 h6 y142 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x126 h5 y30 ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff5">+1</span></div><div class="t m0 x5f h3 y259 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x1 h6 y25a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xc3 h3 y159 ff2 fs0 fc0 sc0 ls2 ws0">1+</div><div class="t m0 xc4 h5 y25b ff5 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 xc4 h5 y25c ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x7 h6 y25d ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x8 h5 y25e ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x150 h4 y159 ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">e<span class="_ _8"> </span><span class="ff4"></span></span></div><div class="t m0 x154 h3 y31 ff3 fs0 fc0 sc0 ls0 ws0">e</div><div class="t m0 x26 h3 y25f ff2 fs0 fc0 sc0 ls0 ws0">2<span class="ff3">n</span></div><div class="t m0 x12e h3 y159 ff2 fs0 fc0 sc0 ls0 ws0">+</div><div class="t m0 x137 h3 y31 ff2 fs0 fc0 sc0 ls0 ws0">11<span class="ff3">e</span></div><div class="t m0 x72 h3 y25f ff2 fs0 fc0 sc0 ls0 ws0">24<span class="ff3">n</span></div><div class="t m0 x2b h5 y25c ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x5b h4 y159 ff4 fs0 fc0 sc0 ls0 ws0"><span class="_ _8"> </span><span class="ff3">O</span></div><div class="t m0 x2c h6 y260 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x15c h3 y31 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x170 h3 y25f ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x12b h5 y25c ff5 fs1 fc0 sc0 ls0 ws0">3</div><div class="t m0 x75 h6 y260 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xb5 h3 y159 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x13d h3 y261 ff2 fs0 fc0 sc0 ls0 ws0">Harmonic n<span class="_ _5"></span>umbers:</div><div class="t m0 x5 h3 y66 ff2 fs0 fc0 sc0 ls0 ws0">1,</div><div class="t m0 x8e h5 y262 ff5 fs1 fc0 sc0 ls0 ws0">3</div><div class="t m0 x8e h5 y263 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x171 h3 y66 ff2 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 xf8 h5 y262 ff5 fs1 fc0 sc0 ls0 ws0">11</div><div class="t m0 xcb h5 y263 ff5 fs1 fc0 sc0 ls0 ws0">6</div><div class="t m0 xda h3 y66 ff2 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x15d h5 y262 ff5 fs1 fc0 sc0 ls0 ws0">25</div><div class="t m0 x15d h5 y263 ff5 fs1 fc0 sc0 ls0 ws0">12</div><div class="t m0 x172 h3 y66 ff2 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 xeb h5 y262 ff5 fs1 fc0 sc0 ls0 ws0">137</div><div class="t m0 x173 h5 y263 ff5 fs1 fc0 sc0 ls0 ws0">60</div><div class="t m0 x44 h3 y66 ff2 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x9 h5 y262 ff5 fs1 fc0 sc0 ls0 ws0">49</div><div class="t m0 x9 h5 y263 ff5 fs1 fc0 sc0 ls0 ws0">20</div><div class="t m0 x9c h3 y66 ff2 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x72 h5 y262 ff5 fs1 fc0 sc0 ls0 ws0">363</div><div class="t m0 x72 h5 y263 ff5 fs1 fc0 sc0 ls0 ws0">140</div><div class="t m0 xd h3 y66 ff2 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x49 h5 y262 ff5 fs1 fc0 sc0 ls0 ws0">761</div><div class="t m0 x49 h5 y263 ff5 fs1 fc0 sc0 ls0 ws0">280</div><div class="t m0 x68 h3 y66 ff2 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x5c h5 y262 ff5 fs1 fc0 sc0 ls0 ws0">7129</div><div class="t m0 x5c h5 y263 ff5 fs1 fc0 sc0 ls0 ws0">2520</div><div class="t m0 x12b h3 y66 ff3 fs0 fc0 sc0 ls4 ws0">,...</div><div class="t m0 xe8 h3 y264 ff2 fs0 fc0 sc0 ls0 ws0">ln<span class="_ _6"> </span><span class="ff3 ls1">n&lt;H</span></div><div class="t m0 xea h5 y265 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x12e h3 y266 ff3 fs0 fc0 sc0 ls0 ws0">&lt;<span class="_ _7"> </span><span class="ff2">ln<span class="_ _6"> </span></span>n<span class="_ _8"> </span><span class="ff2 ls2">+1<span class="_ _9"></span><span class="ff3 ls0">,</span></span></div><div class="t m0 x136 h3 y267 ff3 fs0 fc0 sc0 ls0 ws0">H</div><div class="t m0 xe8 h5 y1f4 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x174 h3 y268 ff2 fs0 fc0 sc0 ls1 ws0">=l<span class="_ _b"></span>n<span class="_ _3d"></span><span class="ff3 ls0">n<span class="_ _8"> </span><span class="ff2">+<span class="_ _8"> </span></span>γ<span class="_ _7"> </span><span class="ff2">+<span class="_ _8"> </span></span>O</span></div><div class="t m0 x47 h6 y269 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x2a h3 y26a ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x2a h3 y6e ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x68 h6 y269 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x175 h3 y267 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x13d h3 y26b ff2 fs0 fc0 sc0 ls0 ws0">F<span class="_ _5"></span>actorial,<span class="_ _7"> </span>Stirlings approximation:</div><div class="t m0 x176 h3 y16a ff5 fs1 fc0 sc0 ls0 ws0">1,<span class="_ _7"> </span>2,<span class="_ _7"> </span>6,<span class="_ _7"> </span>24,<span class="_ _8"> </span>120,<span class="_ _7"> </span>720,<span class="_ _7"> </span>5040,<span class="_ _7"> </span>40320,<span class="_ _7"> </span>362880,<span class="_ _7"> </span><span class="ff3 fs0 ls4">...</span></div><div class="t m0 xf7 h3 y1bf ff3 fs0 fc0 sc0 ls0 ws0">n<span class="ff2 ls1">!=</span></div><div class="t m0 x14f h4 yab ff4 fs0 fc0 sc0 ls0 ws0">√</div><div class="t m0 xf9 h3 y1bf ff2 fs0 fc0 sc0 ls0 ws0">2<span class="ff3 ls10">πn</span></div><div class="t m0 xfa h6 y26c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x27 h3 y1b6 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x44 h3 y16e ff3 fs0 fc0 sc0 ls0 ws0">e</div><div class="t m0 x177 h6 y26c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x12e h5 y26d ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc h6 y26c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x137 h3 y1bf ff2 fs0 fc0 sc0 ls2 ws0">1+Θ</div><div class="t m0 x156 h6 y26c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x178 h3 y1b6 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x48 h3 y16e ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x2c h6 y26c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x12b h3 y1bf ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x13d h3 y26e ff2 fs0 fc0 sc0 ls0 ws0">Ac<span class="_ _5"></span>kermanns function and in<span class="_ _5"></span>v<span class="_ _5"></span>erse:</div><div class="t m0 x1 h3 y1c5 ff3 fs0 fc0 sc0 ls0 ws0">a<span class="ff2">(</span>i,<span class="_ _6"> </span>j<span class="_ _15"></span><span class="ff2 lsf">)=</span></div><div class="t m0 x179 h6 y8f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x179 h6 y8d ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x179 h6 y171 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x174 h3 y26f ff2 fs0 fc0 sc0 ls0 ws0">2</div><div class="t m0 x16e h5 y270 ff6 fs1 fc0 sc0 ls0 ws0">j</div><div class="t m0 x3b h3 y271 ff3 fs0 fc0 sc0 ls0 ws0">i<span class="_ _7"> </span><span class="ff2 ls1">=1</span></div><div class="t m0 x174 h4 y1c5 ff3 fs0 fc0 sc0 ls0 ws0">a<span class="ff2">(</span>i<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff2">1</span></span>,<span class="_ _6"> </span><span class="ff2">2)<span class="_ _3e"> </span></span>j <span class="ff2 ls1">=1</span></div><div class="t m0 x174 h4 y1c4 ff3 fs0 fc0 sc0 ls0 ws0">a<span class="ff2">(</span>i<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff2">1</span></span><span class="ls4">,a<span class="_ _1f"></span><span class="ff2 ls0">(<span class="_ _5"></span><span class="ff3">i,<span class="_ _8"> </span>j<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span><span class="ff2">1))<span class="_ _28"> </span></span></span>i,<span class="_ _8"> </span>j<span class="_ _7"> </span><span class="ff4">≥<span class="_ _7"> </span><span class="ff2">2</span></span></span></span></span></div><div class="t m0 x176 h4 y272 ff3 fs0 fc0 sc0 ls0 ws0">α<span class="ff2">(</span>i<span class="ff2">)<span class="_ _7"> </span>=<span class="_ _7"> </span>min<span class="ff4">{</span></span>j <span class="ff4">|<span class="_ _7"> </span></span>a<span class="ff2">(</span><span class="ls11">j,<span class="_ _6"> </span>j<span class="_ _15"></span></span><span class="ff2">)<span class="_ _7"> </span><span class="ff4">≥<span class="_ _7"> </span></span></span>i<span class="ff4">}</span>.</div><div class="t m0 x3f h3 y273 ff2 fs0 fc0 sc0 ls0 ws0">Con<span class="_ _5"></span>tinuous distributions:<span class="_ _34"> </span>If</div><div class="t m0 xa0 h3 y274 ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3 ls1">a&lt;X<span class="_ _15"></span>&lt;b<span class="_ _b"></span><span class="ff2">]=</span></span></div><div class="t m0 xbb h6 y4f ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xcf h5 y275 ff6 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x64 h5 y15 ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 xbc h3 y276 ff3 fs0 fc0 sc0 ls0 ws0">p<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dx,</div><div class="t m0 x3f h3 y277 ff2 fs0 fc0 sc0 ls0 ws0">then<span class="_ _7"> </span><span class="ff3">p<span class="_ _7"> </span></span>is<span class="_ _7"> </span>the<span class="_ _14"> </span>probabilit<span class="_ _5"></span>y<span class="_ _7"> </span>density<span class="_ _7"> </span>function<span class="_ _7"> </span>of</div><div class="t m0 x3f h3 y278 ff3 fs0 fc0 sc0 ls0 ws0">X<span class="_ _15"></span><span class="ff2 ls12">.I<span class="_ _3f"></span>f</span></div><div class="t m0 x11d h3 y1e ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3 ls13">X&lt;<span class="_ _5"></span>a<span class="_ _3f"></span><span class="ff2 ls1">]=<span class="ff3 ls0">P<span class="_ _6"> </span><span class="ff2">(</span>a<span class="ff2">)</span>,</span></span></span></div><div class="t m0 x3f h3 y279 ff2 fs0 fc0 sc0 ls0 ws0">then <span class="ff3">P<span class="_ _34"> </span></span>is the distribution<span class="_ _7"> </span>function of <span class="ff3">X<span class="_ _15"></span></span><span class="ls12">.I<span class="_ _3f"></span>f</span></div><div class="t m0 x3f h3 y27a ff3 fs0 fc0 sc0 ls0 ws0">P<span class="_ _1e"> </span><span class="ff2">and </span>p <span class="ff2">both exist then</span></div><div class="t m0 x4d h3 y27b ff3 fs0 fc0 sc0 ls0 ws0">P<span class="_ _6"> </span><span class="ff2">(</span>a<span class="ff2 ls1">)=</span></div><div class="t m0 x6e h6 y5a ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x17a h5 y25 ff6 fs1 fc0 sc0 ls0 ws0">a</div><div class="t m0 xb8 h5 y27c ff8 fs1 fc0 sc0 ls0 ws0">−∞</div><div class="t m0 xbb h3 y27d ff3 fs0 fc0 sc0 ls0 ws0">p<span class="ff2">(</span>x<span class="ff2">)<span class="_ _6"> </span></span>dx.</div><div class="t m0 x3f h3 y157 ff2 fs0 fc0 sc0 ls0 ws0">Exp<span class="_ _3"></span>ectation:<span class="_ _1e"> </span>If<span class="_ _7"> </span><span class="ff3">X<span class="_ _34"> </span></span>is discrete</div><div class="t m0 x4c h3 y27e ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x17b h3 y27f ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">g<span class="_ _3"></span></span>(<span class="ff3">X<span class="_ _2"></span></span>)]<span class="_ _7"> </span>=</div><div class="t m0 xa9 h6 y34 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x4f h5 y280 ff6 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x1a h3 y281 ff3 fs0 fc0 sc0 ls0 ws0">g<span class="_ _3"></span><span class="ff2">(</span>x<span class="ff2 ls4">)P<span class="_ _1f"></span>r<span class="_ _1f"></span>[<span class="_ _9"></span><span class="ff3 ls0">X<span class="_ _0"> </span><span class="ff2">=<span class="_ _7"> </span></span>x<span class="ff2">]</span>.</span></span></div><div class="t m0 x3f h3 y25f ff2 fs0 fc0 sc0 ls0 ws0">If <span class="ff3">X<span class="_ _34"> </span></span>con<span class="_ _5"></span>tin<span class="_ _5"></span>uous then</div><div class="t m0 x3f h3 y282 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x6c h3 y3a ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">g<span class="_ _3"></span></span>(<span class="ff3">X<span class="_ _2"></span></span>)]<span class="_ _7"> </span>=</div><div class="t m0 x43 h6 y283 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x79 h5 y284 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x11d h5 y285 ff8 fs1 fc0 sc0 ls0 ws0">−∞</div><div class="t m0 x7b h3 y3a ff3 fs0 fc0 sc0 ls0 ws0">g<span class="_ _3"></span><span class="ff2">(</span>x<span class="ff2">)</span>p<span class="ff2">(</span>x<span class="ff2">)<span class="_ _8"> </span></span>dx<span class="_ _8"> </span><span class="ff2">=</span></div><div class="t m0 x37 h6 y286 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x55 h5 y284 ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x7c h5 y285 ff8 fs1 fc0 sc0 ls0 ws0">−∞</div><div class="t m0 x7e h3 y3a ff3 fs0 fc0 sc0 ls0 ws0">g<span class="_ _3"></span><span class="ff2">(</span>x<span class="ff2">)<span class="_ _8"> </span></span>dP<span class="_ _2"></span><span class="ff2">(</span>x<span class="ff2">)</span>.</div><div class="t m0 x3f h3 y43 ff2 fs0 fc0 sc0 ls0 ws0">V<span class="_ _5"></span>ariance,<span class="_ _7"> </span>standard deviation:</div><div class="t m0 x17c h3 y69 ff2 fs0 fc0 sc0 ls0 ws0">V<span class="_ _3d"></span>AR[<span class="ff3">X<span class="_ _15"></span></span><span class="ls1">]=</span></div><div class="t m0 x113 h3 y287 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x1a h3 y69 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X</span></div><div class="t m0 x52 h5 y288 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1c h4 y69 ff2 fs0 fc0 sc0 ls0 ws0">]<span class="_ _8"> </span><span class="ff4"></span></div><div class="t m0 xd0 h3 y289 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x1f h3 y69 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span>]</div><div class="t m0 x7e h5 y288 ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 xd1 h3 y69 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x7a h3 y6c ff3 fs0 fc0 sc0 ls0 ws0">σ <span class="ff2">=</span></div><div class="t m0 x113 h6 y269 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x36 h3 y6c ff2 fs0 fc0 sc0 ls14 ws0">VA<span class="_ _2"></span>R<span class="_ _2"></span>[<span class="_ _2"></span><span class="ff3 ls0">X<span class="_ _2"></span><span class="ff2">]</span>.</span></div><div class="t m0 x3f h3 y28a ff2 fs0 fc0 sc0 lsc ws0">F<span class="_ _5"></span>or<span class="_ _0"> </span>eve<span class="_ _3"></span>nt<span class="_ _3"></span>s<span class="_ _0"> </span><span class="ff3 ls0">A <span class="ff2">and </span>B<span class="_ _3"></span><span class="ff2">:</span></span></div><div class="t m0 x40 h4 y28b ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">A<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span></span>B<span class="_ _3"></span></span>]<span class="_ _7"> </span>=<span class="_ _7"> </span>Pr[<span class="ff3">A</span>]<span class="_ _8"> </span>+<span class="_ _8"> </span>Pr[<span class="ff3">B<span class="_ _15"></span></span>]<span class="_ _8"> </span><span class="ff4"><span class="_ _8"> </span></span>Pr[<span class="ff3">A<span class="_ _8"> </span><span class="ff4">∧<span class="_ _8"> </span></span>B<span class="_ _3"></span></span>]</div><div class="t m0 x40 h4 y168 ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">A<span class="_ _8"> </span><span class="ff4">∧<span class="_ _8"> </span></span>B<span class="_ _3"></span></span>]<span class="_ _7"> </span>=<span class="_ _7"> </span>Pr[<span class="ff3">A</span>]<span class="_ _8"> </span><span class="ff4">·<span class="_ _8"> </span></span>Pr[<span class="ff3">B<span class="_ _15"></span></span>]<span class="ff3">,</span></div><div class="t m0 x17d h3 y28c ff2 fs0 fc0 sc0 ls0 ws0">iff <span class="ff3">A </span>and <span class="ff3">B<span class="_ _0"> </span></span>are indep<span class="_ _3"></span>enden<span class="_ _5"></span>t.</div><div class="t m0 x77 h4 y28d ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">A<span class="ff4">|</span>B<span class="_ _3"></span></span><span class="ls1">]=</span></div><div class="t m0 x7b h4 y28e ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">A<span class="_ _8"> </span><span class="ff4">∧<span class="_ _8"> </span></span>B<span class="_ _3"></span></span>]</div><div class="t m0 x35 h3 y28f ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">B<span class="_ _3"></span></span>]</div><div class="t m0 x3f h3 y290 ff2 fs0 fc0 sc0 ls0 ws0">F<span class="_ _5"></span>o<span class="_ _5"></span>r random v<span class="_ _5"></span>ariables<span class="_ _14"> </span><span class="ff3">X<span class="_ _34"> </span></span>and <span class="ff3">Y<span class="_ _8"> </span></span>:</div><div class="t m0 x13a h3 y291 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x4b h4 y93 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _7"> </span><span class="ff4">·<span class="_ _8"> </span></span>Y<span class="_ _8"> </span></span><span class="ls1">]=</span></div><div class="t m0 x7b h3 y291 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x169 h4 y93 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span>]<span class="_ _8"> </span><span class="ff4">·</span></div><div class="t m0 x36 h3 y291 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x63 h3 y93 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">Y<span class="_ _8"> </span></span>]<span class="ff3">,</span></div><div class="t m0 x6d h3 y292 ff2 fs0 fc0 sc0 ls0 ws0">if <span class="ff3">X<span class="_ _34"> </span></span>and <span class="ff3">Y<span class="_ _11"> </span></span>are independent.</div><div class="t m0 xce h3 y293 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x122 h3 y177 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _7"> </span></span>+<span class="_ _8"> </span><span class="ff3">Y<span class="_ _8"> </span></span><span class="ls1">]=</span></div><div class="t m0 x7b h3 y293 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x169 h3 y177 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span><span class="ls2">]+</span></div><div class="t m0 x17e h3 y293 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 xbb h3 y177 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">Y<span class="_ _8"> </span></span>]<span class="ff3">,</span></div><div class="t m0 x32 h3 y294 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x111 h3 y295 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">cX<span class="_ _15"></span></span><span class="ls1">]=</span><span class="ff3">c</span></div><div class="t m0 x61 h3 y294 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x50 h3 y295 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span>]<span class="ff3">.</span></div><div class="t m0 x3f h3 y20b ff2 fs0 fc0 sc0 ls0 ws0">Ba<span class="_ _5"></span>yes theorem:</div><div class="t m0 x42 h3 yb8 ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">A</span></div><div class="t m0 x162 h5 ybc ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x16b h4 yb8 ff4 fs0 fc0 sc0 ls0 ws0">|<span class="ff3">B<span class="_ _3"></span><span class="ff2 ls1">]=</span></span></div><div class="t m0 x113 h4 yba ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">B<span class="_ _3"></span><span class="ff4">|</span>A</span></div><div class="t m0 xcf h5 y182 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x166 h3 yba ff2 fs0 fc0 sc0 ls4 ws0">]P<span class="_ _1f"></span>r<span class="_ _1f"></span>[<span class="_ _9"></span><span class="ff3 ls0">A</span></div><div class="t m0 xa4 h5 y182 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 xd1 h3 yba ff2 fs0 fc0 sc0 ls0 ws0">]</div><div class="t m0 x60 h6 y296 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x4f h5 y297 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x4f h5 y298 ff6 fs1 fc0 sc0 ls0 ws0">j<span class="_ _3"></span><span class="ff5">=1</span></div><div class="t m0 x51 h3 ybb ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">A</span></div><div class="t m0 x1e h5 y299 ff6 fs1 fc0 sc0 ls0 ws0">j</div><div class="t m0 xbc h4 ybb ff2 fs0 fc0 sc0 ls4 ws0">]P<span class="_ _1f"></span>r<span class="_ _1f"></span>[<span class="_ _9"></span><span class="ff3 ls0">B<span class="_ _15"></span><span class="ff4">|</span>A</span></div><div class="t m0 xbf h5 y299 ff6 fs1 fc0 sc0 ls0 ws0">j</div><div class="t m0 xba h3 ybb ff2 fs0 fc0 sc0 ls0 ws0">]</div><div class="t m0 x165 h3 yb8 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x3f h3 y29a ff2 fs0 fc0 sc0 ls0 ws0">Inclusion-exclusion:</div><div class="t m0 x4a h3 y29b ff2 fs0 fc0 sc0 ls0 ws0">Pr</div><div class="t m0 x17f h6 y29c ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x4c h5 y188 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x31 h6 y213 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x9f h5 y29d ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x17 h3 y29e ff3 fs0 fc0 sc0 ls0 ws0">X</div><div class="t m0 x34 h5 y29f ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x4d h6 y2a0 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xec h3 y2a1 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x61 h5 y188 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x7a h6 y213 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xa1 h5 y29d ff6 fs1 fc0 sc0 ls0 ws0">i<span class="ff5">=1</span></div><div class="t m0 x6e h3 y29e ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">X</span></div><div class="t m0 x180 h5 y29f ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x1c h3 y29e ff2 fs0 fc0 sc0 ls2 ws0">]+</div><div class="t m0 x181 h5 y2a2 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x162 h6 y2a3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xdd h5 y2a4 ff6 fs1 fc0 sc0 ls0 ws0">k<span class="ff5">=2</span></div><div class="t m0 x11d h4 y2a5 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff4"></span>1)</div><div class="t m0 x35 h5 y2a6 ff6 fs1 fc0 sc0 ls0 ws0">k<span class="ff5">+1</span></div><div class="t m0 x63 h6 y2a3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x6f h5 y195 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x17a h7 yd4 ffa fs2 fc0 sc0 ls0 ws0">i</div><div class="t m0 x19 h5 y195 ff6 fs1 fc0 sc0 ls0 ws0">&lt;<span class="ff8">···</span>&lt;i</div><div class="t m0 x1e h7 yd4 ffa fs2 fc0 sc0 ls0 ws0">k</div><div class="t m0 xa3 h3 y2a5 ff2 fs0 fc0 sc0 ls0 ws0">Pr</div><div class="t m0 x55 h6 y2a7 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xd1 h5 y2a2 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 xa4 h6 y2a3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x7e h5 y195 ff6 fs1 fc0 sc0 ls0 ws0">j<span class="_ _3"></span><span class="ff5">=1</span></div><div class="t m0 x182 h3 y2a5 ff3 fs0 fc0 sc0 ls0 ws0">X</div><div class="t m0 x183 h5 y2a8 ff6 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x184 h7 y2a9 ffa fs2 fc0 sc0 ls0 ws0">j</div><div class="t m0 x38 h6 y2aa ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x185 h3 y2ab ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x3f h3 y2ac ff2 fs0 fc0 sc0 ls0 ws0">Momen<span class="_ _5"></span>t inequalities:</div><div class="t m0 x16b h3 y1e3 ff2 fs0 fc0 sc0 ls0 ws0">Pr</div><div class="t m0 xec h6 y2ad ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xb6 h4 y1e3 ff4 fs0 fc0 sc0 ls0 ws0">|<span class="ff3">X<span class="_ _15"></span></span><span class="ls1">|≥</span><span class="ff3">λ</span></div><div class="t m0 x36 h3 y2ae ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x70 h3 y1e3 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span>]</div><div class="t m0 x54 h6 y2ad ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xd0 h4 y1e3 ff4 fs0 fc0 sc0 ls0 ws0">≤</div><div class="t m0 x20 h3 y2af ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 xf0 h3 y2b0 ff3 fs0 fc0 sc0 ls0 ws0">λ</div><div class="t m0 x65 h3 y1e3 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x110 h3 y2b1 ff2 fs0 fc0 sc0 ls0 ws0">Pr</div><div class="t m0 x162 h6 y2b2 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x186 h6 y2b3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x186 h6 y2b4 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x43 h4 y2b1 ff3 fs0 fc0 sc0 ls0 ws0">X<span class="_ _7"> </span><span class="ff4"></span></div><div class="t m0 x187 h3 y2b5 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 xa9 h3 y2b1 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span>]</div><div class="t m0 x6f h6 y2b6 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x6f h6 y2b7 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x19 h4 y2b8 ff4 fs0 fc0 sc0 ls0 ws0">≥<span class="_ _7"> </span><span class="ff3">λ<span class="_ _8"> </span></span>·<span class="_ _8"> </span><span class="ff3">σ</span></div><div class="t m0 x168 h6 y2b9 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xf0 h4 y2b8 ff4 fs0 fc0 sc0 ls0 ws0">≤</div><div class="t m0 xd1 h3 y1e4 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 xa4 h3 y2ba ff3 fs0 fc0 sc0 ls0 ws0">λ</div><div class="t m0 xbe h5 y2bb ff5 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x167 h3 y2b8 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x3f h3 y2bc ff2 fs0 fc0 sc0 ls0 ws0">Geometric distribution:</div><div class="t m0 x42 h3 y105 ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">X </span>=<span class="_ _7"> </span><span class="ff3">k<span class="_ _15"></span></span><span class="ls1">]=</span><span class="ff3">pq</span></div><div class="t m0 x164 h5 yf8 ff6 fs1 fc0 sc0 ls0 ws0">k<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 x63 h4 y105 ff3 fs0 fc0 sc0 lsd ws0">,q<span class="_ _40"></span><span class="ff2 ls1">=1<span class="_ _5"></span><span class="ff4 ls0"><span class="_ _8"></span><span class="ff3">p,</span></span></span></div><div class="t m0 x33 h3 y2bd ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x4d h3 y2be ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span><span class="ls1">]=</span></div><div class="t m0 x188 h5 y22b ff8 fs1 fc0 sc0 ls0 ws0">∞</div><div class="t m0 x18 h6 y2bf ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x18 h5 y2c0 ff6 fs1 fc0 sc0 ls0 ws0">k<span class="ff5">=1</span></div><div class="t m0 x1b h3 y2c1 ff3 fs0 fc0 sc0 ls10 ws0">kp<span class="_ _5"></span>q</div><div class="t m0 x1c h5 y109 ff6 fs1 fc0 sc0 ls0 ws0">k<span class="ff8"><span class="ff5">1</span></span></div><div class="t m0 xa3 h3 y2c1 ff2 fs0 fc0 sc0 ls0 ws0">=</div><div class="t m0 x55 h3 y10c ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x55 h3 y2c2 ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 x7e h3 y2c3 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x81 h3 y2c4 ff2 fs0 fc0 sc0 ls0 ws0">2<span class="_ _3c"> </span>4<span class="_ _1d"> </span>3</div><div class="t m0 x81 h3 y2c5 ff2 fs0 fc0 sc0 ls0 ws0">3<span class="_ _3c"> </span>8<span class="_ _1d"> </span>5</div><div class="t m0 x81 h3 y13 ff2 fs0 fc0 sc0 ls0 ws0">4<span class="_ _41"> </span>16<span class="_ _42"> </span>7</div><div class="t m0 x81 h3 y132 ff2 fs0 fc0 sc0 ls0 ws0">5<span class="_ _41"> </span>32<span class="_ _43"> </span>11</div><div class="t m0 x81 h3 y20 ff2 fs0 fc0 sc0 ls0 ws0">6<span class="_ _41"> </span>64<span class="_ _43"> </span>13</div><div class="t m0 x81 h3 y2c6 ff2 fs0 fc0 sc0 ls0 ws0">7<span class="_ _3e"> </span>128<span class="_ _44"> </span>17</div><div class="t m0 x81 h3 y2c7 ff2 fs0 fc0 sc0 ls0 ws0">8<span class="_ _3e"> </span>256<span class="_ _44"> </span>19</div><div class="t m0 x81 h3 y2c8 ff2 fs0 fc0 sc0 ls0 ws0">9<span class="_ _3e"> </span>512<span class="_ _44"> </span>23</div><div class="t m0 x80 h3 y2c9 ff2 fs0 fc0 sc0 ls0 ws0">10<span class="_ _45"> </span>1,024<span class="_ _46"> </span>29</div><div class="t m0 x80 h3 y38 ff2 fs0 fc0 sc0 ls0 ws0">11<span class="_ _45"> </span>2,048<span class="_ _46"> </span>31</div><div class="t m0 x80 h3 y2ca ff2 fs0 fc0 sc0 ls0 ws0">12<span class="_ _45"> </span>4,096<span class="_ _46"> </span>37</div><div class="t m0 x80 h3 y15a ff2 fs0 fc0 sc0 ls0 ws0">13<span class="_ _45"> </span>8,192<span class="_ _46"> </span>41</div><div class="t m0 x80 h3 y2cb ff2 fs0 fc0 sc0 ls0 ws0">14<span class="_ _1a"> </span>16,384<span class="_ _47"> </span>43</div><div class="t m0 x80 h3 y2cc ff2 fs0 fc0 sc0 ls0 ws0">15<span class="_ _1a"> </span>32,768<span class="_ _47"> </span>47</div><div class="t m0 x80 h3 y47 ff2 fs0 fc0 sc0 ls0 ws0">16<span class="_ _1a"> </span>65,536<span class="_ _47"> </span>53</div><div class="t m0 x80 h3 y2cd ff2 fs0 fc0 sc0 ls0 ws0">17<span class="_ _33"> </span>131,072<span class="_ _13"> </span>59</div><div class="t m0 x80 h3 y2ce ff2 fs0 fc0 sc0 ls0 ws0">18<span class="_ _33"> </span>262,144<span class="_ _13"> </span>61</div><div class="t m0 x80 h3 y28b ff2 fs0 fc0 sc0 ls0 ws0">19<span class="_ _33"> </span>524,288<span class="_ _13"> </span>67</div><div class="t m0 x80 h3 y168 ff2 fs0 fc0 sc0 ls0 ws0">20<span class="_ _48"> </span>1,048,576<span class="_ _49"> </span>71</div><div class="t m0 x80 h3 y1fb ff2 fs0 fc0 sc0 ls0 ws0">21<span class="_ _48"> </span>2,097,152<span class="_ _49"> </span>73</div><div class="t m0 x80 h3 y28e ff2 fs0 fc0 sc0 ls0 ws0">22<span class="_ _48"> </span>4,194,304<span class="_ _49"> </span>79</div><div class="t m0 x80 h3 y2cf ff2 fs0 fc0 sc0 ls0 ws0">23<span class="_ _48"> </span>8,388,608<span class="_ _49"> </span>83</div><div class="t m0 x80 h3 y1c1 ff2 fs0 fc0 sc0 ls0 ws0">24<span class="_ _10"> </span>16,777,216<span class="_ _1a"> </span>89</div><div class="t m0 x80 h3 y90 ff2 fs0 fc0 sc0 ls0 ws0">25<span class="_ _10"> </span>33,554,432<span class="_ _1a"> </span>97</div><div class="t m0 x80 h3 y2d0 ff2 fs0 fc0 sc0 ls0 ws0">26<span class="_ _10"> </span>67,108,864<span class="_ _4a"> </span>101</div><div class="t m0 x80 h3 y2d1 ff2 fs0 fc0 sc0 ls0 ws0">27<span class="_ _4b"> </span>134,217,728<span class="_ _4c"> </span>103</div><div class="t m0 x80 h3 y9e ff2 fs0 fc0 sc0 ls0 ws0">28<span class="_ _4b"> </span>268,435,456<span class="_ _4c"> </span>107</div><div class="t m0 x13d h3 y9e ff2 fs0 fc0 sc0 ls0 ws0">Binomial distribution:</div><div class="t m0 xd9 h3 y2d2 ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">X </span>=<span class="_ _7"> </span><span class="ff3">k<span class="_ _15"></span></span><span class="ls1">]=</span></div><div class="t m0 x11b h6 y2d3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xfa h3 y2d4 ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 xfa h3 y2d5 ff3 fs0 fc0 sc0 ls0 ws0">k</div><div class="t m0 x25 h6 y2d3 ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xb h3 y2d2 ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 x15e h5 y2d6 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x12e h3 y2d7 ff3 fs0 fc0 sc0 ls0 ws0">q</div><div class="t m0 xc h5 y2d6 ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8"></span>k</div><div class="t m0 xb3 h4 y2d7 ff3 fs0 fc0 sc0 lsd ws0">,q<span class="_ _40"></span><span class="ff2 ls1">=1<span class="_ _5"></span><span class="ff4 ls0"><span class="_ _8"></span><span class="ff3">p,</span></span></span></div><div class="t m0 xca h3 ybf ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x189 h3 y2d8 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span><span class="ls1">]=</span></div><div class="t m0 xeb h5 y2d9 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x11b h6 y2da ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x11b h5 y2db ff6 fs1 fc0 sc0 ls0 ws0">k<span class="ff5">=1</span></div><div class="t m0 x27 h3 y2dc ff3 fs0 fc0 sc0 ls0 ws0">k</div><div class="t m0 x71 h6 y2dd ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x58 h3 ybe ff3 fs0 fc0 sc0 ls0 ws0">n</div><div class="t m0 x58 h3 y189 ff3 fs0 fc0 sc0 ls0 ws0">k</div><div class="t m0 xc h6 y2dd ff7 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x46 h3 y2dc ff3 fs0 fc0 sc0 ls0 ws0">p</div><div class="t m0 x73 h5 y186 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 xb3 h3 y2dc ff3 fs0 fc0 sc0 ls0 ws0">q</div><div class="t m0 x2b h5 y186 ff6 fs1 fc0 sc0 ls0 ws0">n<span class="ff8"></span>k</div><div class="t m0 x48 h3 y2dc ff2 fs0 fc0 sc0 ls0 ws0">=<span class="_ _7"> </span><span class="ff3">np.</span></div><div class="t m0 x13d h3 y29f ff2 fs0 fc0 sc0 ls0 ws0">P<span class="_ _5"></span>oisson distribution:</div><div class="t m0 x8e h3 y1db ff2 fs0 fc0 sc0 ls0 ws0">Pr[<span class="ff3">X </span>=<span class="_ _7"> </span><span class="ff3">k<span class="_ _15"></span></span><span class="ls1">]=</span></div><div class="t m0 x44 h3 y18e ff3 fs0 fc0 sc0 ls0 ws0">e</div><div class="t m0 x71 h5 y191 ff8 fs1 fc0 sc0 ls0 ws0"><span class="ff6">λ</span></div><div class="t m0 x9c h3 y18e ff3 fs0 fc0 sc0 ls0 ws0">λ</div><div class="t m0 xef h5 y191 ff6 fs1 fc0 sc0 ls0 ws0">k</div><div class="t m0 x9b h3 y216 ff3 fs0 fc0 sc0 ls0 ws0">k<span class="_ _3"></span><span class="ff2">!</span></div><div class="t m0 x29 h3 y1db ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 xaa h3 y2de ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 x2a h3 y1db ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span><span class="ls1">]=</span><span class="ff3">λ.</span></div><div class="t m0 x13d h3 y2df ff2 fs0 fc0 sc0 ls0 ws0">Normal (Gaussian) distribution:</div><div class="t m0 x1 h3 y199 ff3 fs0 fc0 sc0 ls0 ws0">p<span class="ff2">(</span>x<span class="ff2 ls1">)=</span></div><div class="t m0 x15d h3 y217 ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 x8 h4 y199 ff4 fs0 fc0 sc0 ls0 ws0">√</div><div class="t m0 x150 h3 y2e0 ff2 fs0 fc0 sc0 ls0 ws0">2<span class="ff3 ls10">πσ</span></div><div class="t m0 xeb h3 y199 ff3 fs0 fc0 sc0 ls0 ws0">e</div><div class="t m0 x153 h5 ye2 ff8 fs1 fc0 sc0 ls0 ws0"><span class="ff5">(<span class="ff6">x</span></span><span class="ff6">µ<span class="ff5">)</span></span></div><div class="t m0 x18a h7 y2e1 ffc fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x72 h5 ye2 ff6 fs1 fc0 sc0 ls0 ws0">/<span class="ff5">2</span>σ</div><div class="t m0 xd h7 y2e1 ffc fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x47 h3 y199 ff3 fs0 fc0 sc0 ls0 ws0">,</div><div class="t m0 x126 h3 ye0 ff2 fs0 fc0 sc0 ls0 ws0">E</div><div class="t m0 xb4 h3 y199 ff2 fs0 fc0 sc0 ls0 ws0">[<span class="ff3">X<span class="_ _15"></span></span><span class="ls1">]=</span><span class="ff3">µ.</span></div><div class="t m0 x13d h3 y2e2 ff2 fs0 fc0 sc0 ls0 ws0">The<span class="_ _34"> </span>“coup<span class="_ _3"></span>on<span class="_ _34"> </span>collector”:<span class="_ _21"> </span>W<span class="_ _5"></span>e<span class="_ _0"> </span>are<span class="_ _34"> </span>given<span class="_ _0"> </span>a</div><div class="t m0 x13d h3 y2e3 ff2 fs0 fc0 sc0 ls0 ws0">random coupon eac<span class="_ _5"></span>h<span class="_ _7"> </span>day<span class="_ _3d"></span>, and<span class="_ _7"> </span>there are<span class="_ _7"> </span><span class="ff3">n</span></div><div class="t m0 x13d h3 y2e4 ff2 fs0 fc0 sc0 ls0 ws0">differen<span class="_ _5"></span>t<span class="_ _0"> </span>t<span class="_ _5"></span>yp<span class="_ _3"></span>es<span class="_ _0"> </span>of<span class="_ _0"> </span>coup<span class="_ _3"></span>ons.<span class="_ _11"> </span>The<span class="_ _0"> </span>distribu-</div><div class="t m0 x13d h3 y2e5 ff2 fs0 fc0 sc0 ls0 ws0">tion of coupons is uniform.<span class="_ _1e"> </span>The<span class="_ _7"> </span>exp<span class="_ _3"></span>ected</div><div class="t m0 x13d h3 y2e6 ff2 fs0 fc0 sc0 ls0 ws0">n<span class="_ _5"></span>umber<span class="_ _0"> </span>of<span class="_ _0"> </span>da<span class="_ _5"></span>ys<span class="_ _0"> </span>to<span class="_ _0"> </span>pass<span class="_ _0"> </span>before<span class="_ _0"> </span>we<span class="_ _0"> </span>to<span class="_ _0"> </span>col-</div><div class="t m0 x13d h3 y2e7 ff2 fs0 fc0 sc0 ls0 ws0">lect all <span class="ff3">n </span><span class="lsc">ty<span class="_ _3"></span>p<span class="_ _15"></span>e<span class="_ _3"></span>s<span class="_ _0"> </span>is</span></div><div class="t m0 xa h3 y109 ff3 fs0 fc0 sc0 ls0 ws0">nH</div><div class="t m0 x9c h5 y2e8 ff6 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 xef h3 y109 ff3 fs0 fc0 sc0 ls0 ws0">.</div><div class="t m0 x80 h3 y2e9 ff2 fs0 fc0 sc0 ls0 ws0">29<span class="_ _4b"> </span>536,870,912<span class="_ _4c"> </span>109</div><div class="t m0 x80 h3 y297 ff2 fs0 fc0 sc0 ls0 ws0">30<span class="_ _d"> </span>1,073,741,824<span class="_ _4d"> </span>113</div><div class="t m0 x80 h3 y2ea ff2 fs0 fc0 sc0 ls0 ws0">31<span class="_ _d"> </span>2,147,483,648<span class="_ _4d"> </span>127</div><div class="t m0 x80 h3 y29c ff2 fs0 fc0 sc0 ls0 ws0">32<span class="_ _d"> </span>4,294,967,296<span class="_ _4d"> </span>131</div><div class="t m0 x140 h3 y2eb ff2 fs0 fc0 sc0 ls0 ws0">P<span class="_ _5"></span>ascals T<span class="_ _5"></span>riangle</div><div class="t m0 xf2 h3 y2ec ff2 fs0 fc0 sc0 ls0 ws0">1</div><div class="t m0 xe5 h3 y2a5 ff2 fs0 fc0 sc0 ls13 ws0">11</div><div class="t m0 xf1 h3 y2ed ff2 fs0 fc0 sc0 ls13 ws0">121</div><div class="t m0 xe3 h3 y2ee ff2 fs0 fc0 sc0 ls13 ws0">1331</div><div class="t m0 x18b h3 y2ae ff2 fs0 fc0 sc0 ls13 ws0">14641</div><div class="t m0 x18c h3 yf3 ff2 fs0 fc0 sc0 ls0 ws0">1 5 10 10 5 1</div><div class="t m0 x87 h3 y2ba ff2 fs0 fc0 sc0 ls0 ws0">1 6 15 20 15 6 1</div><div class="t m0 x18d h3 y19e ff2 fs0 fc0 sc0 ls0 ws0">1 7 21 35 35 21 7 1</div><div class="t m0 x8f h3 y2ef ff2 fs0 fc0 sc0 ls0 ws0">1 8 28 56 70 56 28 8 1</div><div class="t m0 x84 h3 y2f0 ff2 fs0 fc0 sc0 ls0 ws0">1 9 36 84 126 126 84 36 9 1</div><div class="t m0 x114 h3 y2c0 ff2 fs0 fc0 sc0 ls0 ws0">1 10 45 120 210 252 210 120 45 10 1</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div></div>